124 research outputs found

    Overview of the Nordic Seas CARINA data and salinity measurements

    Get PDF
    Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005

    Formation of intermediate water in the Greenland Sea during the 1990s

    Get PDF
    The transformation rates of upper water into intermediate water (500 to 1600 m) of the central Greenland Sea are deduced from annual changes in CFC tracer inventories between 1991 and 2000. Transformation was found to be intermittent in time, mainly taking place in the winters of 1994/1995 and 1999/2000. Formation rates are of the order of 0.2 to 0.9 Sv (1 Sv = 106 m3 s_1), equivalent to a 10-year average of up to 0.2 Sv. Associated changes in heat content of the intermediate layer are consistent with a winter-time heat loss of 20 W m-2 over 1 month (75 W n r 2 over 1 week) at the sea surface

    Water mass transformation in the Greenland Sea during the 1990s

    Get PDF
    Time series of hydrographic and transient tracer measurements were used to study the variability of Greenland Sea water mass transformation between 1991 and 2000. Increases in tracer inventories indicate active renewal of Greenland Sea Intermediate Water (GSIW) at a rate of 0.1 to 0.2 Sv (1 Sv = 1 × 106 m3 s−1) (10-year average). A temperature maximum (Tmax) was established at the base of the upper layer (500 m) as a consequence of anomalously strong freshwater input into the near-surface layer at the beginning of the 1990s. Tmax rapidly descended to 1500 m by 1995 followed by a much slower rate of descent. GSIW became warmer and less saline compared to the 1980s. During the deepening phase of Tmax, atmospheric data revealed above-average wind stress curl and oceanic heat loss. In addition, high Arctic Ocean sea-ice export and lack of local sea-ice formation have been documented for that period. A combination of all these factors may have evoked the renewal of GSIW with anomalously freshwater from the upper layers. The Tmax layer established a stability maximum that inhibits vertical exchange between intermediate and deeper waters. Temperature and salinity of deep waters continued to increase at rates of 0.01°C yr−1 and 0.001 yr−1, respectively. However, since 1993, decrease in and homogenization of deep water transient tracer concentrations indicate that renewal occurred predominantly by addition of Arctic Ocean waters. In 2000 the water column (500 m to 3400 m) required an additional 60 W m−2 (110 W m−2) over the annual mean heat loss to restore its heat content to 1989 (1971) values

    Anbefaling på valg av standarder/rammeverk for velferdsteknologi

    Get PDF
    Velferdsteknologi kan gi mange, uansett alder, mulighet for å bo hjemme under trygge forhold dersom man blir syk, behøver omsorg eller bare ønsker mulighet til å bo hjemme i en sen fase i livet

    A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere

    Get PDF
    The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75–105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice–Ramsperger–Kassel–Markus theory are used to show that even small Fe–Mg–silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm−3 prevents the formation of stable negative ions

    Exploring the environmental strategy of big energy companies to drive sustainability

    Get PDF
    The purpose of this research is to provide an in-depth evaluation of the environmental strategy of the biggest energy companies to drive sustainability, i.e., for both business and the environment as a collective entity. Rooted in the theory of Corporate Social Responsibility (CSR), a secondary data analysis was conducted on the top five energy companies (i.e., British Petroleum (BP), Exxon Mobil, Gazprom, Sinopec and Saudi Aramco) as published by Enercom (2016) to investigate their approach to sustainable development. To do so, each company's environmental strategy was evaluated in order to gain a clear understanding of their implemented procedures for sustainable development towards future. This research paper gives an insight in to the main energy companies' impact on nature and assesses how sustainable their strategies are towards environmental issues. Through this evaluation, we clearly identified how climate change forces companies to be responsible towards society, the economy, and the environment. This study's finding contributes to the present body of knowledge and highlights how the big energy companies have taken responsibility for their actions towards environmental issues

    Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic

    Get PDF
    The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch (~11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity (~3.5 °C and ~1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore