66 research outputs found

    On peaked solitary waves of Degasperis - Procesi equation

    Full text link
    The Degasperis - Procesi (DP) equation describing the propagation of shallow water waves contains a physical parameter ω\omega, and it is well-known that the DP equation admits solitary waves with a peaked crest when ω=0\omega = 0. In this article, we illustrate, for the first time, that the DP equation admits peaked solitary waves even when ω0\omega \neq 0. This is helpful to enrich our knowledge and deepen our understandings about peaked solitary waves of the DP equation.Comment: 11 pages, 3 figures, accepted by Science China - Physics, Mechanics & Astronom

    Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine. A post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial

    Get PDF
    Background: The PRESTO study of non-invasive vagus nerve stimulation (nVNS; gammaCore®) featured key primary and secondary end points recommended by the International Headache Society to provide Class I evidence that for patients with an episodic migraine, nVNS significantly increases the probability of having mild pain or being pain-free 2 h post stimulation. Here, we examined additional data from PRESTO to provide further insights into the practical utility of nVNS by evaluating its ability to consistently deliver clinically meaningful improvements in pain intensity while reducing the need for rescue medication. Methods: Patients recorded pain intensity for treated migraine attacks on a 4-point scale. Data were examined to compare nVNS and sham with regard to the percentage of patients who benefited by at least 1 point in pain intensity. We also assessed the percentage of attacks that required rescue medication and pain-free rates stratified by pain intensity at treatment initiation. Results: A significantly higher percentage of patients who used acute nVNS treatment (n = 120) vs sham (n = 123) reported a ≥ 1-point decrease in pain intensity at 30 min (nVNS, 32.2%; sham, 18.5%; P = 0.020), 60 min (nVNS, 38.8%; sham, 24.0%; P = 0.017), and 120 min (nVNS, 46.8%; sham, 26.2%; P = 0.002) after the first attack. Similar significant results were seen when assessing the benefit in all attacks. The proportion of patients who did not require rescue medication was significantly higher with nVNS than with sham for the first attack (nVNS, 59.3%; sham, 41.9%; P = 0.013) and all attacks (nVNS, 52.3%; sham, 37.3%; P = 0.008). When initial pain intensity was mild, the percentage of patients with no pain after treatment was significantly higher with nVNS than with sham at 60 min (all attacks: nVNS, 37.0%; sham, 21.2%; P = 0.025) and 120 min (first attack: nVNS, 50.0%; sham, 25.0%; P = 0.018; all attacks: nVNS, 46.7%; sham, 30.1%; P = 0.037). Conclusions: This post hoc analysis demonstrated that acute nVNS treatment quickly and consistently reduced pain intensity while decreasing rescue medication use. These clinical benefits provide guidance in the optimal use of nVNS in everyday practice, which can potentially reduce use of acute pharmacologic medications and their associated adverse events. Trial registration: ClinicalTrials.gov identifier: NCT02686034

    Sustainable Land Use: Methodology and Application

    Get PDF
    The chapters in this volume are edited versions of papers presented at the NATO Ad- vanced Research Workshop on Environmental Change Adaptation and Security held in Budapest, Hungary, from October 16 - 18, 1997. As is evident in this volume, the papers ranged from descriptions of environmental and health issues in Russia and Eastern Europe to models of sustainable land use. This diversity of perspectives on environ- ment and security is indicative of both the breadth of this new area of research as well as the varied background of the researchers involved. The discussions at the NATO workshop were remarkably animated and exciting, not surprising given the interest in the topic. I think this vitality is reflected in the papers in this volume as well. The main purpose of the NATO ARW is to foster research links among researchers from NATO countries and Central and Eastern European States, Russia, and the Newly Independent States. In editing this volume, a decision was made to keep to the spirit of this purpose and-if at all possible-include all papers prepared for the workshop. This required extensive editing and rewriting of some of the papers (and consequent delays in production). A determination was made early in the process by the workshop steering committee that the value of publishing the entire collection of articles out- weighed the advantages of accepting only a limited number

    the effects of climate change on the multifunctional role of basilicata s forests the effects induced on yield and co2 absorption

    Get PDF
    The first studies on the possible impact of climate change on European forests and the development of adaptation and mitigation strategies began in the 1990s and resulted in the identification of risk assessment models and forest management tools. The prediction of climate change impacts on forests has been based using the evidence theory or Dempster-Shafer (DS)'s theory, appropriately spatialised. The implemented evidence lines refer to the concepts of vulnerability and resilience. The results of the DS model, applied to the Basilicata region, were utilised to assess the loss in biomass production capacity and CO2 absorption ability of different forest-derived biomasses. The loss in stumpage value and in the estimated CO2 absorption shows a reduction over time of forest system's economic value that is basically higher in 2050 than in 2100. The applied methodological approach has shown that the high degree of spatial and information detail may be helpful to produce good predictions to envisage environmental policy strategies for the monitoring and mitigation of the damages caused by the climate change, with a view to ensuring the ecosystems' capacity to produce positive externalities, including air carbon sequestration capacity

    Graph Regionalization with Clustering and Partitioning: an Application for Daily Commuting Flows in Albania

    Get PDF
    The paper presents an original application of the recently proposed spatial data mining method named GraphRECAP on daily commuting flows using 2011 Albanian census data. Its aim is to identify several clusters of Albanian municipalities/communes; propose a classification of the Albanian territory based on daily commuting flows among municipalities/communes. Starting from 373 local units, we first applied a spatial clustering technique without imposing any constraining strategy. Based on the input variables, we obtained 16 clusters. In the second step of our analysis, we impose a set of constraining parameters to identify intermediate areas between the local level (municipality/commune) and the national one. We have defined 12 derived regions (same number as the actual Albanian prefectures but with different geographies). These derived regions are quite different from the traditional ones in terms of both geographical dimensions and boundarie

    Estimating residual biomass of olive tree crops using terrestrial laser scanning

    Full text link
    [EN] Agricultural residues have gained increasing interest as a source of renewable energy. The development of methods and techniques that allow to inventory residual biomass needs to be explored further. In this study, the residual biomass of olive trees was estimated based on parameters derived from using a Terrestrial Laser Scanning System (TLS). To this end, 32 olive trees in 2 orchards in the municipality of Viver, Central Eastern Spain, were selected and measured using a TLS system. The residual biomass of these trees was pruned and weighed. Several algorithms were applied to the TLS data to compute the main parameters of the trees: total height, crown height, crown diameter and crown volume. Regarding the last parameter, 4 methods were tested: the global convex hull volume, the convex hull by slice volume, the section volume, and the volume measured by voxels. In addition, several statistics were computed from the crown points for each tree. Regression models were calculated to predict residual biomass using 3 sets of potential explicative variables: firstly, the height statistics retrieved from 3D cloud data for each crown tree, secondly, the parameters of the trees derived from TLS data and finally, the combination of both sets of variables. Strong relationships between residual biomass and TLS parameters (crown volume parameters) were found (R2 = 0.86, RMSE = 2.78 kg). The pruning biomass pre- diction fraction was improved by 6%, in terms of R2, when the variance of the crown-point elevations was selected (R2 = 0.92, RMSE = 2.01 kg). The study offers some important insights into the quantification of residual biomass, which is essential information for the production of biofuel.Fernández-Sarría, A.; López- Cortés, I.; Estornell Cremades, J.; Velázquez Martí, B.; Salazar Hernández, DM. (2019). Estimating residual biomass of olive tree crops using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation. 75:163-170. https://doi.org/https://doi.org/10.1016/j.jag.2018.10.019S1631707

    Reviewing the use of resilience concepts in forest sciences

    Get PDF
    Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed. Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context

    Pressure control using stochastic cell rescaling

    No full text
    Molecular dynamics simulations require barostats to be performed at a constant pressure. The usual recipe is to employ the Berendsen barostat first, which displays a first-order volume relaxation efficient in equilibration but results in incorrect volume fluctuations, followed by a second-order or a Monte Carlo barostat for production runs. In this paper, we introduce stochastic cell rescaling, a first-order barostat that samples the correct volume fluctuations by including a suitable noise term. The algorithm is shown to report volume fluctuations compatible with the isobaric ensemble and its anisotropic variant is tested on a membrane simulation. Stochastic cell rescaling can be straightforwardly implemented in the existing codes and can be used effectively in both equilibration and production phases
    corecore