268 research outputs found

    Activation Energy of Metastable Amorphous Ge2Sb2Te5 from Room Temperature to Melt

    Full text link
    Resistivity of metastable amorphous Ge2Sb2Te5 (GST) measured at device level show an exponential decline with temperature matching with the steady-state thin-film resistivity measured at 858 K (melting temperature). This suggests that the free carrier activation mechanisms form a continuum in a large temperature scale (300 K - 858 K) and the metastable amorphous phase can be treated as a super-cooled liquid. The effective activation energy calculated using the resistivity versus temperature data follow a parabolic behavior, with a room temperature value of 333 meV, peaking to ~377 meV at ~465 K and reaching zero at ~930 K, using a reference activation energy of 111 meV (3kBT/2) at melt. Amorphous GST is expected to behave as a p-type semiconductor at Tmelt ~ 858 K and transitions from the semiconducting-liquid phase to the metallic-liquid phase at ~ 930 K at equilibrium. The simultaneous Seebeck (S) and resistivity versus temperature measurements of amorphous-fcc mixed-phase GST thin-films show linear S-T trends that meet S = 0 at 0 K, consistent with degenerate semiconductors, and the dS/dT and room temperature activation energy show a linear correlation. The single-crystal fcc is calculated to have dS/dT = 0.153 {\mu}V/K for an activation energy of zero and a Fermi level 0.16 eV below the valance band edge.Comment: 5 pages, 5 figure

    The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Get PDF
    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.This work was funded by a grant from the CSIRO Transformational Biology Capability Platform to Adnane Nemri. Claire Anderson was supported by an ARC Discovery Grant (DP120104044) awarded to David A. Jones and Peter N. Dodds

    Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini

    Get PDF
    A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of theLinum marginale-Melampsora liniplant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L.marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123,AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0-44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic. Author summary Melampsora liniis a rust fungus that infects native flax,Linum marginalein south-eastern Australia where its epidemiology and evolution have been intensively studied since 1987. Over that time, substantial diversity in the pathotypic structure ofM.linihas been demonstrated but an understanding of how genetic diversity in pathogen populations is maintained through space and time is lacking. Here we integrated phenotypic, genotypic and epidemiological datasets spanning 16 annual epidemics across three host populations to examine long-term pathogen genetic dynamics. The results show that host ecotype is the dominant selective force in the face of strong bottlenecks and annual patterns of genetic turnover. Results from previous studies indicate that in this geographic region,M.linilacks the capacity to reproduce sexually-we thus expected to find limited genetic diversity and evidence for strong clonality influencing genetic dynamics within growing seasons. However, the breadth of genomic coverage provided by the SNP markers revealed high levels of genotypic variation withinM.linipopulations. This discovery contrasts with observed phenotypic dynamics as the epidemics of this pathogen were largely dominated by four pathotypes across the study period. Based on a detailed assessment and comparison of pathotypic and genotypic patterns, our study increases the understanding of how genetic diversity is generated and maintained through space and time within wild pathogen populations. The implications for the management of resistance to pathogens in agricultural or conservation contexts are significant: the appearance of clonality may be hiding high levels of pathogen diversity and recombination. Understanding how this diversity is generated could provide new and unique ways to mitigate or suppress the emergence of infectious strains, allowing to efficiently combat harmful diseases.Peer reviewe

    Cobalt Impregnation on Titania Photocatalysts Enhances Vis Phenol Photodegradation

    Get PDF
    This article belongs to the Special Issue Advanced Catalysts for Energy and Environmental Applications[Abstract] One of the main challenges of photocatalysis is to find a stable and effective photocatalyst, that is active and effective under sunlight. Here, we discuss the photocatalytic degradation of phenol as a model pollutant in aqueous solution using NUV-Vis (>366 nm) and UV (254 nm) in the presence of TiO2-P25 impregnated with different concentrations of Co (0.1%, 0.3%, 0.5%, and 1%). The modification of the surface of the photocatalyst was performed by wet impregnation, and the obtained solids were characterized using X-ray diffraction, XPS, SEM, EDS, TEM, N2 physisorption, Raman and UV-Vis DRS, which revealed the structural and morphological stability of the modified material. BET isotherms are type IV, with slit-shaped pores formed by nonrigid aggregate particles and no pore networks and a small H3 loop near the maximum relative pressure. The doped samples show increased crystallite sizes and a lower band gap, extending visible light harvesting. All prepared catalysts showed band gaps in the interval 2.3–2.5 eV. The photocatalytic degradation of aqueous phenol over TiO2-P25 and Co(X%)/TiO2 was monitored using UV-Vis spectrophotometry: Co(0.1%)/TiO2 being the most effective with NUV-Vis irradiation. TOC analysis showed ca. 96% TOC removal with NUV-Vis radiation, while only 23% removal under UV radiation.This research received support through grant TED2021-132667B-I00, funded by the EU NextGenerationEU/PRTR through project MCIN/AEI/10.13039/501100011033. Financial support was also provided by the regional government Xunta de Galicia through project GPC/ED431B 2020/52. S.B. thanks the KA-107 grant received from the EU through the Erasmus+ program for a research stay at UDCXunta de Galicia; ED431B 2020/5

    Using mutual information to investigate non-linear correlation between AE index, ULF Pc5 wave activity and electron precipitation

    Get PDF
    In this study, we use mutual information from information theory to investigate non-linear correlation between geomagnetic activity indicated by auroral electrojet (AE) index with both the global ultra low frequency (ULF) Pc5 wave power and medium energy (>= 30 keV) electron precipitation at the central outer radiation belt. To investigate the energy and magnetic local time (MLT) dependence of the non-linearity, we calculate the mutual information and Pearson correlation coefficient separately for three different energy ranges (30-100 keV, 100-300 keV and >= 300 keV) and four different MLT sectors (0-6, 6-12, 12-18, 18-24). We compare results from 2 years 2004 and 2007 representing geomagnetically more active and less active years, respectively. The correlation analysis between the AE index and electron precipitation shows a clear MLT and energy dependence in both active and quiet conditions. In the two lowest energy ranges of the medium energy electrons (30-100 keV and 100-300 keV) both non-linear correlation and Pearson correlation indicate strong dependence with the AE index in the dawn sector. The linear dependence indicated by the Pearson correlation coefficient decreases from dawn to dusk while the change in the non-linear correlation is smaller indicating an increase in the non-linearity from dawn to dusk. The non-linearity between the AE index and electron precipitation is larger at all MLT sectors except MLTs 6-12 during geomagnetically more active year when larger amount of the activity is driven by interplanetary coronal mass ejections (ICMEs) compared to lower activity year with high speed stream (HSS) and stream interaction region (SIR) driven activity. These results indicate that the processes leading to electron precipitation become more non-linear in the dusk and during geomagnetically more active times when the activity is driven by ICMEs. The non-linearity between the AE index and global ULF Pc5 activity is relatively low and seems not to be affected by the difference in the geomagnetic activity during the 2 years studied.Peer reviewe

    Outer Van Allen belt trapped and precipitating electron flux responses to two interplanetary magnetic clouds of opposite polarity

    Get PDF
    Recently, it has been established that interplanetary coronal mass ejections (ICMEs) can dramatically affect both trapped electron fluxes in the outer radiation belt and precipitating electron fluxes lost from the belt into the atmosphere. Precipitating electron fluxes and energies can vary over a range of timescales during these events. These variations depend on the initial energy and location of the electron population and the ICME characteristics and structures. One important factor controlling electron dynamics is the magnetic field orientation within the ejecta that is an integral part of the ICME. In this study, we examine Van Allen Probes (RBSPs) and Polar Orbiting Environmental Satellites (POESs) data to explore trapped and precipitating electron fluxes during two ICMEs. The ejecta in the selected ICMEs have magnetic cloud characteristics that exhibit the opposite sense of the rotation of the north-south magnetic field component (B-Z). RBSP data are used to study trapped electron fluxes in situ, while POES data are used for electron fluxes precipitating into the upper atmosphere. The trapped and precipitating electron fluxes are qualitatively analysed to understand their variation in relation to each other and to the magnetic cloud rotation during these events. Inner magnetospheric wave activity was also estimated using RBSP and Geostationary Operational Environmental Satellite (GOES) data. In each event, the largest changes in the location and magnitude of both the trapped and precipitating electron fluxes occurred during the southward portion of the magnetic cloud. Significant changes also occurred during the end of the sheath and at the sheath-ejecta boundary for the cloud with south to north magnetic field rotation, while the ICME with north to south rotation had significant changes at the end boundary of the cloud. The sense of rotation of B-Z and its profile also clearly affects the coherence of the trapped and/or precipitating flux changes, timing of variations with respect to the ICME structures, and flux magnitude of different electron populations. The differing electron responses could therefore imply partly different dominant acceleration mechanisms acting on the outer radiation belt electron populations as a result of opposite magnetic cloud rotation.Peer reviewe

    Elaboration d'un prototype de distributeur auto-régulé

    Get PDF
    Cette étude porte sur les interactions entre un fluide et une membrane hyperélastique ayant pour fonction de réguler un écoulement. Le comportement de la membrane contrainte par la pression a été simulé sous Abaqus. Ces résultats ont permis de modéliser l'écoulement (code CFD commercial) lorsque la membrane est déformée et de déterminer la loi débit/pression du dispositif. Ces développements numériques s'appuient sur la méthode des éléments finis et sur un algorithme de résolution itératif pour le couplage. Ces travaux participent à l'élaboration d'un prototype de distributeur régulé

    A propos d’une tumeur axillaire

    Get PDF
    Un nourrisson de 18 mois consulte pour une tuméfaction des parties molles axillaires révélée dès la naissance augmentant progressivement de volume sans signes inflammatoires ni fistule. L’exploration radiologique affirme le caractère graisseux de la masse, l’étude anatomopathologique conclut à un lipoblastome. Le lipoblastome est une tumeur bénigne, rare, touchant souvent l’enfant de moins de 5 ans, se localisant surtout aux extrémités des membres explorée par échographie et tomodensitométrie. Le traitement est chirurgical et consiste à une exérèse totale. La récidive est possible

    Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections : a statistical analysis

    Get PDF
    The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically at several timescales, and these strong electron fluxes present a hazard for spacecraft traversing the belts. The belt response to solar wind driving is, however, largely unpredictable, and the direct response to specific large-scale heliospheric structures has not been considered previously. We investigate the immediate response of electron fluxes in the outer belt that are driven by sheath regions preceding interplanetary coronal mass ejections and the associated wave activity in the inner magnetosphere. We consider the events recorded from 2012 to 2018 in the Van Allen Probes era to utilise the energy- and radial-distance-resolved electron flux observations of the twin spacecraft mission. We perform a statistical study of the events by using the superposed epoch analysis in which the sheaths are superposed separately from the ejecta and resampled to the same average duration. Our results show that the wave power of ultra-low frequency Pc5 and electromagnetic ion cyclotron waves, as measured by a Geostationary Operational Environmental Satellite (GOES), is higher during the sheath than during the ejecta. However, the level of chorus wave power, as measured by the Van Allen Probes, remains approximately the same due to similar substorm activity during the sheath and ejecta. Electron flux enhancements are common at low energies ( 4). It is distinctive that the depletion extends to lower energies at larger distances. We suggest that this L-shell and energy-dependent depletion results from the magnetopause shadowing that dominates the losses at large distances, while the wave-particle interactions dominate closer to the Earth. We also show that non-geoeffective sheaths cause significant changes in the outer belt electron fluxes.Peer reviewe

    Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind

    Get PDF
    In this work, we investigate magnetic field fluctuations in three coronal mass ejection (CME)-driven sheath regions at 1 AU, with their speeds ranging from slow to fast. The data set we use consists primarily of high-resolution (0.092 s) magnetic field measurements from the Wind spacecraft. We analyse magnetic field fluctuation amplitudes, compressibility, and spectral properties of fluctuations. We also analyse intermittency using various approaches; we apply the partial variance of increments (PVIs) method, investigate probability distribution functions of fluctuations, including their skewness and kurtosis, and perform a structure function analysis. Our analysis is conducted separately for three different subregions within the sheath and one in the solar wind ahead of it, each 1 h in duration. We find that, for all cases, the transition from the solar wind ahead to the sheath generates new fluctuations, and the intermittency and compressibility increase, while the region closest to the ejecta leading edge resembled the solar wind ahead. The spectral indices exhibit large variability in different parts of the sheath but are typically steeper than Kolmogorov's in the inertial range. The structure function analysis produced generally the best fit with the extended p model, suggesting that turbulence is not fully developed in CME sheaths near Earth's orbit. Both Kraichnan-Iroshinikov and Kolmogorov's forms yielded high intermittency but different spectral slopes, thus questioning how well these models can describe turbulence in sheaths. At the smallest timescales investigated, the spectral indices indicate shallower than expected slopes in the dissipation range (between 2 and 2 :5), suggesting that, in CME-driven sheaths at 1 AU, the energy cascade from larger to smaller scales could still be ongoing through the ion scale. Many turbulent properties of sheaths (e.g. spectral indices and compressibility) resemble those of the slow wind rather than the fast. They are also partly similar to properties reported in the terrestrial magnetosheath, in particular regarding their intermittency, compressibility, and absence of Kolmogorov's type turbulence. Our study also reveals that turbulent properties can vary considerably within the sheath. This was particularly the case for the fast sheath behind the strong and quasi-parallel shock, including a small, coherent structure embedded close to its midpoint. Our results support the view of the complex formation of the sheath and different physical mechanisms playing a role in generating fluctuations in them.Peer reviewe
    • …
    corecore