225 research outputs found

    Thirty Years After Michael E. Porter: What Do We Know About Business Exit?

    Get PDF
    Although a business exit is an important corporate change initiative, the buyer’s side seems to be more appealing to management researchers than the seller’s because acquisitions imply growth, i.e., success. Yet from an optimistic viewpoint, business exit can effectively create value for the selling company. In this paper we attempt to bring the relevance of the seller’s side back into our consciousness by asking: What do we know about business exit? We start our exploration with Porter (1976), focusing on literature that investigates the antecedents of, barriers to, and outcomes of business exit. We also include studies from related fields such as finance and economics.1 Through this research we determine three clusters of findings: factors promoting business exit, exit barriers, and exit outcomes. Overall, it is the intention of this paper to highlight the importance of business exit for research and practice. Knowing what we know about business exits and their high financial value we should bear in mind that exit need not mean failure but a new beginning for a corporation

    Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    Get PDF
    We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He ii λ4686 broad emission-line light curves lag that of the 5100 +-optical continuum by 4.17+0.36-0.36 and 0.79+0.35-0.34 days, respectively. The Hβ lag relative to the 1158 ultraviolet continuum light curve measured by the Hubble Space Telescope is ∼50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ∼50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He ii(+O iii]), and Si iv(+O iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548

    Space Telescope and Optical Reverberation Mapping Project. XII. broad-line region modeling of NGC 5548.

    Get PDF
    We present geometric and dynamical modeling of the broad line region (BLR) for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The data set includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the Hβ, C iv, and Lyα broad emission lines. We find an extended disk-like Hβ BLR with a mixture of near-circular and outflowing gas trajectories, while the C iv and Lyα BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C iv and Lyα emission arising at smaller radii than the Hβ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of log10(MBH/M)=7.640.18+0.21{\mathrm{log}}_{10}({M}_{\mathrm{BH}}/{M}_{\odot })={7.64}_{-0.18}^{+0.21}. We examine the effect of using the V band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV–optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the V band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the Hβ results to similar models of data obtained in 2008 when the active galactic nucleus was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remained unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole

    Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    Get PDF
    We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He ii λ4686 broad emission-line light curves lag that of the 5100 +-optical continuum by 4.17+0.36-0.36 and 0.79+0.35-0.34 days, respectively. The Hβ lag relative to the 1158 ultraviolet continuum light curve measured by the Hubble Space Telescope is ∼50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ∼50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He ii(+O iii]), and Si iv(+O iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548

    Get PDF
    In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity–delay maps for the prominent broad emission lines (Lyα, C iv, He ii, and Hβ) in the spectrum of NGC 5548. These are the most detailed velocity–delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5–10 lt-day has a broad single-peaked velocity profile. The Lyα, C iv, and Hβ responses extend from inside 2 to outside 20 lt-day, with double peaks at ±2500 km s−1 in the 10–20 lt-day delay range. An incomplete ellipse in the velocity–delay plane is evident in Hβ. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay τ=(R/c)(1sini)5\tau =(R/c)(1-\sin i)\approx 5 days gives the inclination i ≈ 45°. The inferred black hole mass is MBH ≈ 7 × 107 M⊙. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C iv and Lyα line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out

    Decreased Numbers of Blood Dendritic Cells and Defective Function of Regulatory T Cells in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis

    Get PDF
    BACKGROUND: Dendritic cells (DC) and regulatory cells (Treg) play pivotal roles in controlling both normal and autoimmune adaptive immune responses. DC are the main antigen-presenting cells to T cells, and they also control Treg functions. In this study, we examined the frequency and phenotype of DC subsets, and the frequency and function of Treg from patients with ANCA-associated vasculitis (AAV). METHODOLOGY/PRINCIPAL FINDINGS: Blood samples from 19 untreated patients with AAV during flares and before any immunosuppressive treatment were analyzed, along with 15 AAV patients in remission and 18 age-matched healthy controls. DC and Treg numbers, and phenotypes were assessed by flow cytometry, and in vitro suppressive function of Treg was determined by co-culture assay. When compared to healthy volunteers, absolute numbers of conventional and plasmacytoid DC were decreased in AAV patients. During the acute phase this decrease was significantly more pronounced and was associated with an increased DC expression of CD62L. Absolute numbers of Treg (CD4(+)CD25(high)CD127(low/-) Tcells) were moderately decreased in patients. FOXP3 and CD39 were expressed at similar levels on Treg from patients as compared to controls. The suppressive function of Treg from AAV patients was dramatically decreased as compared to controls, and this defect was more pronounced during flares than remission. This Treg functional deficiency occurred in the absence of obvious Th17 deviation. CONCLUSION: In conclusion, these data show that AAV flares are associated with both a decrease number and altered phenotype of circulating DC and point to a role for Treg functional deficiency in the pathogenesis of AAV

    Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548

    Get PDF
    We present geometric and dynamical modeling of the broad line region (BLR) for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The data set includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the Hβ, C iv, and Ly broad emission lines. We find an extended disk-like Hβ BLR with a mixture of near-circular and outflowing gas trajectories, while the C iv and Ly BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C iv and Ly emission arising at smaller radii than the Hβ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of . We examine the effect of using the V band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the V band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the Hβ results to similar models of data obtained in 2008 when the active galactic nucleus was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remained unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole
    corecore