36 research outputs found

    Intervention thresholds for osteoporosis in men and women: A study based on data from Sweden

    Get PDF
    The aim of this study was to determine the threshold of fracture probability at which interventions became cost-effective in men and women, based on data from Sweden. We modeled the effects of a treatment costing 500peryeargivenfor5yearsthatdecreasedtheriskofallosteoporoticfracturesby35500 per year given for 5 years that decreased the risk of all osteoporotic fractures by 35% followed by a waning of effect for a further 5 years. Sensitivity analyses included a range of effectiveness (10-50%) and a range of intervention costs (200-500/year). Data on costs and risks were from Sweden. Costs included direct costs, but excluded indirect costs due to morbidity. A threshold for cost-effectiveness of approximately 45,000/QALYgainedwasused.Costofaddedyearswasincludedinasensitivityanalysis.Withthebasecase(45,000/QALY gained was used. Cost of added years was included in a sensitivity analysis. With the base case (500 per year; 35% efficacy) treatment in women was cost-effective with a 10-year hip fracture probability that ranged from 1.2% at the age of 50 years to 7.4% at the age of 80 years. Similar results were observed in men except that the threshold for cost-effectiveness was higher at younger ages than in women (2.0 vs 1.2%, respectively, at the age of 50 years). Intervention thresholds were sensitive to the assumed effectiveness and intervention cost. The exclusion of osteoporotic fractures other than hip fracture significantly increased the cost-effectiveness ratio because of the substantial morbidity from such other fractures, particularly at younger ages. We conclude that the inclusion of all osteoporotic fractures has a marked effect on intervention thresholds, that these vary with age, and that available treatments can be targeted cost-effectively to individuals at moderately increased fracture risk

    Effect of commercial rye whole-meal bread on postprandial blood glucose and gastric emptying in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intake of dietary fibre has been shown to reduce the risk of developing diabetes mellitus. The aim of this study was to compare the effects of commercial rye whole-meal bread containing whole kernels and white wheat bread on the rate of gastric emptying and postprandial glucose response in healthy subjects.</p> <p>Methods</p> <p>Ten healthy subjects took part in a blinded crossover trial. Blood glucose level and gastric emptying rate (GER) were determined after the ingestion of 150 g white wheat bread or 150 g whole-meal rye bread on two different occasions after fasting overnight. The GER was measured using real-time ultrasonography, and was calculated as the percentage change in antral cross-sectional area 15 and 90 minutes after completing the meal.</p> <p>Results</p> <p>No statistically significant difference was found between the GER values or the blood glucose levels following the two meals when evaluated with the Wilcoxon signed rank sum test.</p> <p>Conclusion</p> <p>The present study revealed no difference in postprandial blood glucose response or gastric emptying after the ingestion of rye whole-meal bread compared with white wheat bread.</p> <p>Trial registration</p> <p>NCT00779298</p

    Temperature and Resource Availability May Interactively Affect Over-Wintering Success of Juvenile Fish in a Changing Climate

    Get PDF
    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5°C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2°C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task

    Data from: Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons

    No full text
    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response

    Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons

    No full text
    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response

    Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.

    No full text
    White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response

    Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission

    Get PDF
    Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein

    LeePlosOne2015

    No full text
    The data are organized in the same way as in the figures of the paper. They are all in matlab format

    Simulations of radiation damage as a function of the temporal pulse profile in femtosecond X-ray protein crystallography

    No full text
    Serial femtosecond X-ray crystallography of protein nanocrystals using ultrashort and intense pulses from an X-ray free-electron laser has proved to be a successful method for structural determination. However, due to significant variations in diffraction pattern quality from pulse to pulse only a fraction of the collected frames can be used. Experimentally, the X-ray temporal pulse profile is not known and can vary with every shot. This simulation study describes how the pulse shape affects the damage dynamics, which ultimately affects the biological interpretation of electron density. The instantaneously detected signal varies during the pulse exposure due to the pulse properties, as well as the structural and electronic changes in the sample. Here ionization and atomic motion are simulated using a radiation transfer plasma code. Pulses with parameters typical for X-ray free-electron lasers are considered: pulse energies ranging from 104 to 107 J cm-2 with photon energies from 2 to 12 keV, up to 100 fs long. Radiation damage in the form of sample heating that will lead to a loss of crystalline periodicity and changes in scattering factor due to electronic reconfigurations of ionized atoms are considered here. The simulations show differences in the dynamics of the radiation damage processes for different temporal pulse profiles and intensities, where ionization or atomic motion could be predominant. The different dynamics influence the recorded diffracted signal in any given resolution and will affect the subsequent structure determination
    corecore