589 research outputs found
Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO
The effects of hole injection in amorphous-IGZO is analyzed by means of
first-principles calculations. The injection of holes in the valence band tail
states leads to their capture as a polaron, with high self-trapping energies
(from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides
and remain localized close to the hole injection source due to the presence of
a large diffusion energy barrier (of at least 0.6eV). Their diffusion mechanism
can be mediated by the presence of hydrogen. The capture of these holes is
correlated with the low off-current observed for a-IGZO transistors, as well
as, with the difficulty to obtain a p-type conductivity. The results further
support the formation of peroxides as being the root cause of Negative bias
illumination stress (NBIS). The strong self-trapping substantially reduces the
injection of holes from the contact and limits the creation of peroxides from a
direct hole injection. In presence of light, the concentration of holes
substantially rises and mediates the creation of peroxides, responsible for
NBIS.Comment: 8 pages, 8 figures, to be published in Journal of Applied Physic
A large rock avalanche onto Morsarjökull glacier, south-east Iceland. Its implications for ice-surface evolution and glacier dynamics
In spring 2007, a large rock avalanche descended onto the Morsárjökull valley glacier in southeast Iceland, leaving one fifth of the glacier buried. The insulating effect of the deposit on the ice was quickly observed as a difference in the ablation between the exposed ice and that under the deposit. After three melt seasons, the ice surface under the deposit was 29 m above the surrounding glacier surface. A reduced rate of ice melting beneath the area of the deposit would likely alter the longitudinal profile of the glacier
QMCube (QM3): An all‐purpose suite for multiscale QM/MM calculations
QMCube (QM3) is a suite written in the Python programming language, initially focused on multiscale QM/MM simulations of biological systems, but open enough to address other kinds of problems. It allows the user to combine highly efficient QM and MM programs, providing unified access to a wide range of computational methods. The suite also supplies additional modules with extra functionalities. These modules facilitate common tasks such as performing the setup of the models or process the data generated during the simulations. The design of QM3 has been carried out considering the least number of external dependencies (only an algebra library, already included in the distribution), which makes it extremely portable. Also, the modular structure of the suite should help to expand and develop new computational methods
Recommended from our members
Method for long time scale simulations of solids: Application to crystal growth and dopant clustering
An important challenge in theoretical chemistry is the time scale problem. Atomic motion can be simulated directly by integrating Newton's equations over a time scale of nanoseconds, but most interesting chemical reactions take place on a time scale of seconds. We have developed a methodology to bridge this time scale gap using harmonic transition state theory suitable for solid systems. Possible reactive events and their rates are found with a saddle point finding method called the dimer method. When enough events are found, a kinetic Monte Carlo algorithm is used to choose which event occurs so that the system's position can be advanced in time. This technique has two major advantages over traditional kinetic Monte Carlo -- atoms do not have to map onto lattice sites for classification and kinetic events can be arbitrarily complicated. We have studied the homoepitaxial growth of aluminum and copper using an EAM potential at 80K with experimentally relevant deposition rates of monolayers per minute using a multiple time scale approach. Atomic deposition events are simulated directly with classical dynamics for several picoseconds until the incident energy has dissipated, and the long time between deposition events is simulated with the adaptive kinetic Monte Carlo method. Our simulations indicate that the Al( 100) surface grows much smoother then Cu( 100) at temperature between 0 and 80K due in part to long range multi atom processes which enable aluminum atoms to easily descend from atop islands. The high rate of such processes is due to their low activation energy, which is supported by density functional theory calculations, and the trend that processes involving more atoms tend to have larger prefactors and be favored by entropy. The scheme is efficient enough to model the evolution of systems with ab-initio forces as well, for which I will show an example of the breakup of dopant clusters in silicon
Force-matched embedded-atom method potential for niobium
Large-scale simulations of plastic deformation and phase transformations in
alloys require reliable classical interatomic potentials. We construct an
embedded-atom method potential for niobium as the first step in alloy potential
development. Optimization of the potential parameters to a well-converged set
of density-functional theory (DFT) forces, energies, and stresses produces a
reliable and transferable potential for molecular dynamics simulations. The
potential accurately describes properties related to the fitting data, and also
produces excellent results for quantities outside the fitting range. Structural
and elastic properties, defect energetics, and thermal behavior compare well
with DFT results and experimental data, e.g., DFT surface energies are
reproduced with less than 4% error, generalized stacking-fault energies differ
from DFT values by less than 15%, and the melting temperature is within 2% of
the experimental value.Comment: 17 pages, 13 figures, 7 table
Dualities for modal algebras from the point of view of triples
In this paper we show how the theory of monads can be used to deduce in a uniform manner several duality theorems involving categories of relations on one side and categories of algebras with homomorphisms preserving only some operations on the other. Furthermore, we investigate the monoidal structure induced by Cartesian product on the relational side and show that in some cases the corresponding operation on the algebraic side represents bimorphisms
Maximum Flux Transition Paths of Conformational Change
Given two metastable states A and B of a biomolecular system, the problem is
to calculate the likely paths of the transition from A to B. Such a calculation
is more informative and more manageable if done for a reduced set of collective
variables chosen so that paths cluster in collective variable space. The
computational task becomes that of computing the "center" of such a cluster. A
good way to define the center employs the concept of a committor, whose value
at a point in collective variable space is the probability that a trajectory at
that point will reach B before A. The committor "foliates" the transition
region into a set of isocommittors. The maximum flux transition path is defined
as a path that crosses each isocommittor at a point which (locally) has the
highest crossing rate of distinct reactive trajectories. (This path is
different from that of the MaxFlux method of Huo and Straub.) It is argued that
such a path is nearer to an ideal path than others that have been proposed with
the possible exception of the finite-temperature string method path. To make
the calculation tractable, three approximations are introduced, yielding a path
that is the solution of a nonsingular two-point boundary-value problem. For
such a problem, one can construct a simple and robust algorithm. One such
algorithm and its performance is discussed.Comment: 7 figure
Atomic-scale modeling of the deformation of nanocrystalline metals
Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display
technologically interesting properties, such as dramatically increased
hardness, increasing with decreasing grain size. Due to the small grain size,
direct atomic-scale simulations of plastic deformation of these materials are
possible, as such a polycrystalline system can be modeled with the
computational resources available today.
We present molecular dynamics simulations of nanocrystalline copper with
grain sizes up to 13 nm. Two different deformation mechanisms are active, one
is deformation through the motion of dislocations, the other is sliding in the
grain boundaries. At the grain sizes studied here the latter dominates, leading
to a softening as the grain size is reduced. This implies that there is an
``optimal'' grain size, where the hardness is maximal.
Since the grain boundaries participate actively in the deformation, it is
interesting to study the effects of introducing impurity atoms in the grain
boundaries. We study how silver atoms in the grain boundaries influence the
mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in
Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see
http://www.fysik.dtu.dk/~schiotz/publist.htm
- …