585 research outputs found

    Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO

    Full text link
    The effects of hole injection in amorphous-IGZO is analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as, with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative bias illumination stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.Comment: 8 pages, 8 figures, to be published in Journal of Applied Physic

    A large rock avalanche onto Morsarjökull glacier, south-east Iceland. Its implications for ice-surface evolution and glacier dynamics

    Get PDF
    In spring 2007, a large rock avalanche descended onto the Morsárjökull valley glacier in southeast Iceland, leaving one fifth of the glacier buried. The insulating effect of the deposit on the ice was quickly observed as a difference in the ablation between the exposed ice and that under the deposit. After three melt seasons, the ice surface under the deposit was 29 m above the surrounding glacier surface. A reduced rate of ice melting beneath the area of the deposit would likely alter the longitudinal profile of the glacier

    QMCube (QM3): An all‐purpose suite for multiscale QM/MM calculations

    Get PDF
    QMCube (QM3) is a suite written in the Python programming language, initially focused on multiscale QM/MM simulations of biological systems, but open enough to address other kinds of problems. It allows the user to combine highly efficient QM and MM programs, providing unified access to a wide range of computational methods. The suite also supplies additional modules with extra functionalities. These modules facilitate common tasks such as performing the setup of the models or process the data generated during the simulations. The design of QM3 has been carried out considering the least number of external dependencies (only an algebra library, already included in the distribution), which makes it extremely portable. Also, the modular structure of the suite should help to expand and develop new computational methods

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Dualities for modal algebras from the point of view of triples

    Get PDF
    In this paper we show how the theory of monads can be used to deduce in a uniform manner several duality theorems involving categories of relations on one side and categories of algebras with homomorphisms preserving only some operations on the other. Furthermore, we investigate the monoidal structure induced by Cartesian product on the relational side and show that in some cases the corresponding operation on the algebraic side represents bimorphisms

    Maximum Flux Transition Paths of Conformational Change

    Full text link
    Given two metastable states A and B of a biomolecular system, the problem is to calculate the likely paths of the transition from A to B. Such a calculation is more informative and more manageable if done for a reduced set of collective variables chosen so that paths cluster in collective variable space. The computational task becomes that of computing the "center" of such a cluster. A good way to define the center employs the concept of a committor, whose value at a point in collective variable space is the probability that a trajectory at that point will reach B before A. The committor "foliates" the transition region into a set of isocommittors. The maximum flux transition path is defined as a path that crosses each isocommittor at a point which (locally) has the highest crossing rate of distinct reactive trajectories. (This path is different from that of the MaxFlux method of Huo and Straub.) It is argued that such a path is nearer to an ideal path than others that have been proposed with the possible exception of the finite-temperature string method path. To make the calculation tractable, three approximations are introduced, yielding a path that is the solution of a nonsingular two-point boundary-value problem. For such a problem, one can construct a simple and robust algorithm. One such algorithm and its performance is discussed.Comment: 7 figure

    Atomic-scale modeling of the deformation of nanocrystalline metals

    Get PDF
    Nanocrystalline metals, i.e. metals with grain sizes from 5 to 50 nm, display technologically interesting properties, such as dramatically increased hardness, increasing with decreasing grain size. Due to the small grain size, direct atomic-scale simulations of plastic deformation of these materials are possible, as such a polycrystalline system can be modeled with the computational resources available today. We present molecular dynamics simulations of nanocrystalline copper with grain sizes up to 13 nm. Two different deformation mechanisms are active, one is deformation through the motion of dislocations, the other is sliding in the grain boundaries. At the grain sizes studied here the latter dominates, leading to a softening as the grain size is reduced. This implies that there is an ``optimal'' grain size, where the hardness is maximal. Since the grain boundaries participate actively in the deformation, it is interesting to study the effects of introducing impurity atoms in the grain boundaries. We study how silver atoms in the grain boundaries influence the mechanical properties of nanocrystalline copper.Comment: 10 pages, LaTeX2e, PS figures and sty files included. To appear in Mater. Res. Soc. Symp. Proc. vol 538 (invited paper). For related papers, see http://www.fysik.dtu.dk/~schiotz/publist.htm
    corecore