Given two metastable states A and B of a biomolecular system, the problem is
to calculate the likely paths of the transition from A to B. Such a calculation
is more informative and more manageable if done for a reduced set of collective
variables chosen so that paths cluster in collective variable space. The
computational task becomes that of computing the "center" of such a cluster. A
good way to define the center employs the concept of a committor, whose value
at a point in collective variable space is the probability that a trajectory at
that point will reach B before A. The committor "foliates" the transition
region into a set of isocommittors. The maximum flux transition path is defined
as a path that crosses each isocommittor at a point which (locally) has the
highest crossing rate of distinct reactive trajectories. (This path is
different from that of the MaxFlux method of Huo and Straub.) It is argued that
such a path is nearer to an ideal path than others that have been proposed with
the possible exception of the finite-temperature string method path. To make
the calculation tractable, three approximations are introduced, yielding a path
that is the solution of a nonsingular two-point boundary-value problem. For
such a problem, one can construct a simple and robust algorithm. One such
algorithm and its performance is discussed.Comment: 7 figure