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Atomic-scale simulations of the mechanical deformation of nanocrystalline metals
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Center for Atomic-scale Materials Physics (CAMP) and Department of Physics, Technical University of Denmark,

DK-2800 Lyngby, Denmark
~Received 11 February 1999; revised manuscript received 11 June 1999!

Nanocrystalline metals, i.e., metals in which the grain size is in the nanometer range, have a range of
technologically interesting properties including increased hardness and yield strength. We present atomic-scale
simulations of the plastic behavior of nanocrystalline copper. The simulations show that the main deformation
mode is sliding in the grain boundaries through a large number of uncorrelated events, where a few atoms~or
a few tens of atoms! slide with respect to each other. Little dislocation activity is seen in the grain interiors.
The localization of the deformation to the grain boundaries leads to a hardening as the grain size is increased
~reverse Hall-Petch effect!, implying a maximum in hardness for a grain size above the ones studied here. We
investigate the effects of varying temperature, strain rate, and porosity, and discuss the relation to recent
experiments. At increasing temperatures the material becomes softer in both the plastic and elastic regime.
Porosity in the samples result in a softening of the material; this may be a significant effect in many experi-
ments.@S0163-1829~99!05941-X#

I. INTRODUCTION

The modeling of the mechanical properties of everyday
materials is a very challenging problem. The main difficulty
is the vastly different length and time scales at which the
various processes occur during deformation—ranging from
the Ångstro¨m and subpicosecond scales of the atomic pro-
cesses, to beyond the millimeter and second scales of the
macroscopic deformation. Naturally, very different modeling
techniques are required to model phenomena at so different
scales. Atomic-scale simulations~typically molecular dy-
namics! can handle time scales of up to a few nanoseconds
and system sizes of up to 108 atoms,1,2 although one is typi-
cally limited to significantly smaller system sizes and simu-
lation times by the available computer resources, and by the
need to repeat the simulations at different conditions.

In spite of these limitations atomic-scale simulations are
gaining increasing importance in materials science by being
applied to selected subproblems or to problems where the
natural length scale is in the nanometer range.1–5

One such atomic-scale problem is the mechanical defor-
mation of nanocrystalline metals, i.e., metals where the grain
size is in the nanometer range. Nanocrystalline metals have
recently received much interest because they may have me-
chanical, chemical and physical properties different from
their coarse-grained counterparts. For example, the hardness
and yield stress may increase five to ten times when the grain
size is reduced from the macroscopic to the nanometer
range.6–9

Recently, computer simulations of the structure10–14 of
nanocrystalline metals and semiconductors, and of their
elastic11 and plastic15–24 properties, have appeared in the lit-
erature. In previous papers, we described the plastic defor-
mation of nanocrystalline copper at zero temperature.21,22 In
this paper we focus on the elastic and plastic properties of
nanocrystalline metals, in particular copper, at finite tem-
perature. We find that the materials have a very high yield
stress, and that the yield stress decrease with decreasing
grain size~reverse Hall-Petch effect!. The main deformation

mode is found to be localized sliding in the grain boundaries.
The high yield stress and hardness of nanocrystalline met-

als is generally attributed to the Hall-Petch effect,25,26 where
the hardness increases with the inverse square root of the
grain size. The Hall-Petch effect is generally assumed to be
caused by the grain boundaries acting as barriers to the dis-
location motion, thus hardening the material. The detailed
mechanism behind this behavior is still under debate.27–30A
cessation or reversal of the Hall-Petch effect will therefore
limit the maximal hardness and strength that can be obtained
in nanocrystalline metals by further refining of the grain size.
There are a number of observations of areverseHall-Petch
effect, i.e., of a softening when the grain size is reduced.31–34

The interpretation of these results have generated some con-
troversy. It is at present not clear if the experimentally re-
ported reverse Hall-Petch effect is an intrinsic effect or if it is
caused by reduced sample quality at the finest grain sizes.
The computer simulations presented here show that an intrin-
sic effect is clearly possible.

The structure of the paper is as follows. In Sec. II we
discuss the setup of the nanocrystalline model systems. Sec-
tion III discusses the simulation and analysis methods used.
The simulation results are presented in Sec. IV, and subse-
quently discussed in Sec. V.

II. SIMULATION SETUP

In order to obtain realistic results in our simulations, and
to be able to compare our simulations with the available
experimental data, we have attempted to produce systems
with realistic grain structures. Unfortunately, the micro-
scopic structure is not very well characterized experimen-
tally, and depends on the way the nanocrystalline metal was
prepared. We have tried to create systems that mimic what is
known about the grain structure of nanocrystalline metals
generated by inert gas condensation. The grains seem to be
almost equiaxed, separated by narrow grain boundaries. The
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grains are essentially dislocation free. The grain-size distri-
bution is log normal.6,35,36

A. Construction of the initial configuration

In our simulations the grains are produced using a
Voronoi construction:37 a set of grain centers are chosen at
random, and the part of space closer to a given center than to
any other center is filled with atoms in a randomly rotated
face-centered-cubic~fcc! lattice. Periodic boundary condi-
tions are imposed on the computational cell. This procedure
generates systems without texture and with random grain
boundaries. Effects of texture could easily be included by
introducing preferred orientations of the grains.19 In the limit
of a large number of grains, the Voronoi construction will
generate a grain-size distribution close to a log-normal
distribution.38

In the grain boundaries thus generated, it is possible that
two atoms from two different grains get too close to each
other. In such cases one of the atoms is removed to prevent
unphysically large energies and forces as the simulation is
started. To obtain more relaxed grain boundaries the system
is annealed for 10 000 timesteps~50 ps! at 300 K, followed
by an energy minimization. This procedure is important to
allow unfavorable local atomic configurations to relax.

To investigate whether the parameters of the annealing
procedure are critical, we have annealed the same system for
50 and 100 ps at 300 K, and for 50 ps at 600 K. We have
compared the mechanical properties of these systems with
those of an identical system without annealing. We find that
the annealing is important~the unannealed system was
softer!, but the parameters of the annealing are not important
within the parameter space investigated.

A similar generation procedure has been reported by
Chen,10 by D’Agostino and Van Swygenhoven,15 and by
Van Swygenhoven and Caro.16,17 A different approach was
proposed by Phillpot, Wolf, and Gleiter:11,12 a nanocrystal-
line metal is generated by a computer simulation where a
liquid is solidified in the presence of crystal nuclei, i.e., small
spheres of atoms held fixed in crystalline positions. The sys-
tem was then quenched, and the liquid crystallized around
the seeds, thus creating a nanocrystalline metal. In the re-
ported simulations, the positions and orientations of the
seeds were deterministically chosen to produce eight grains
of equal size and with known grain boundaries, but the
method can naturally be modified to allow randomly placed
and oriented seeds. The main drawback of this procedure is
the large number of defects~mainly stacking faults! intro-
duced in the grains by the rapid solidification. The stacking
faults are clearly seen in the resulting nanocrystalline metal
~Fig. 7 of Ref. 11!. The appearance of a large number of
stacking faults was also seen in the solidification of large
clusters even if the cooling is done as slowly as possible in
atomistic simulations.39,40

B. Structures

A typical system~after annealing and cooling to zero
Kelvin! with a grain size of 5.2 nm is shown in Fig. 1~a!. The
atoms have been color coded according to the local crystal
structure, as determined by the common neighbor analysis
~see Sec. III C!. In Fig. 2 the radial distribution function

~RDBF! g(r ) for the same system is shown. It is defined as
the average number of atoms per volume at the distancer
from a given atom. The RDBF is seen to differ from that of
a perfect fcc crystal in two ways. First, the peaks are not
sharp delta functions, but are broadened somewhat. This
broadening is in part due to strain fields in the grains~prob-
ably originating from the grain boundaries!, and in part due
to atoms in or near the grain boundaries sitting close to~but
not at! the lattice positions. The second difference is seen in
the inset: the RDBF does not go to zero between the peaks. It
is the signature of some disorder which in this case comes
from the grain boundaries.

Experimentally, information about the RDBF can be ob-
tained from x-ray-absorption fine-structure~XAFS! measure-
ments. This method has been used to measure the average
coordination number of Cu atoms in nanocrystalline Cu,
finding coordination numbers of 11.860.3 and 11.960.3 in

FIG. 1. The initial~a! and final~b! configuration of a nanocrys-
talline copper system deformed 10% at 300 K. The system contains
approximately 100 000 atoms arranged in 16 grains, giving an av-
erage grain diameter of 5.2 nm. Atoms are color-coded according to
the local crystalline order. White atoms are in a perfect fcc envi-
ronment. Light grey atoms are in local hcp order, which for ex-
ample corresponds to stacking faults. Atoms in any other environ-
ment ~in grain boundaries and dislocation cores! are colored dark
grey. The arrow marks an extrinsic stacking fault that appeared
during the deformation. It was created by two Shockley partial
moving through the grain on adjacent crystal planes.
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samples with 34- and 13-nm grain size, respectively.41 From
these results the average coordination number of the atoms in
the grain boundaries was estimated to 11.461.2, i.e., within
the experimental uncertainty it is the same as in the bulk.
Integrating the first peak of the calculated RDBF~Fig. 2, «
50%) gives an average coordination number of 11.9
60.15. As the RDBF does not go to zero between the first
two peaks, it is not clear where the upper limit of the inte-
gration should be chosen, hence the uncertainty. The value
given is for an upper limit of 3.125 Å . There is thus excel-
lent ~but perhaps rather trivial! agreement between the cal-
culated and the experimental coordination numbers.

Numerical studies have shown that the Voronoi construc-
tion results in a grain-size distribution that it is well de-
scribed by a log-normal distribution~although for more than
5000 grains a two-parameter gamma distribution gives a bet-
ter fit!.38 In Fig. 3 we show the grain size distributions in our
simulations with intended average grain sizes of 3.28 and
5.21 nm. The observed distributions are consistent with log-
normal distributions, although due to the rather low number
of grains it is not possible to distinguish between a log-
normal or a normal distribution.

III. SIMULATION METHODS

We model the interactions between the atoms using a
many-body effective medium theory~EMT! potential.42,43

EMT gives a realistic description of the metallic bonding, in
particular in fcc metals and their alloys. Computationally, it
is not much more demanding than pair potentials, but due to
its many-body nature it gives a far more realistic description
of the materials properties.

The systems can be deformed by rescaling the coordinates
along a direction in space~in the following referred to as the
z direction!. During this deformation either a conventional
molecular-dynamics~MD! algorithm or a minimization algo-

rithm is used to update the atomic positions in response to
the deformation.

A. Molecular dynamics at finite temperature

At finite temperatures a conventional molecular-dynamics
algorithm is used, where the Newtonian equations of motion
for the atoms are solved numerically. Before the deformation
is applied the system is heated to the desired temperature by
a short molecular-dynamics simulations using Langevin
dynamics,44 i.e., where a friction and a fluctuating force is
added to the equation of motion of the atoms. When the
desired temperature has been reached~after approximately
10 ps!, the simulations is performed using the velocity Verlet
algorithm.45 We use a timestep of 5 fs, safely below the value
where the dynamics becomes unstable. During the deforma-
tion process the internal energy increases by the work per-
formed on the system. This amounts in practice to a small
heating of the system of the order of;30 K.

At each timestep the system is deformed by a tiny scaling
of the coordinates, thez coordinates are multiplied by 11e,
the x and y coordinates by 12ne, wheree is a very small
number, chosen to produce the desired deformation rate.46

The constantn is an ‘‘approximate Poisson’s ratio.’’ A
Monte Carlo algorithm is used to optimize the two lateral
dimensions of the system: after every 20th time step a
change in the lateral dimensions is proposed and the result-
ing change in total energy is calculated. The proposed
change is accepted based on the usual Metropolis criterion.44

In this way the exact value chosen forn becomes uncritical,
as the Monte Carlo algorithm governs the contraction in the
lateral directions. The use ofnÞ0 is just for computational
efficiency. We usedn50.4 as this was between the optimal
value in the part of the simulation where elastic deformation
dominates~Poisson’s ratio'0.3) and in the part where plas-
tic deformation dominates (n'0.5 as volume is then con-
served!.

FIG. 2. The radial distribution functiong(r ) for the system in
Fig. 1~a! at T50, before and after 10% deformation. The curve for
the undeformed sample («50%) has been displaced 0.5 units up-
wards. g(r ) is the average number of atoms per volume at the
distancer from a given atom. The marks above the peaks indicate
the positions of the~infinitely sharp! peaks in a perfect crystal at
T50. The inset shows thatg(r ) does not vanish between the first
and second peak as it does for a perfect crystal. This contribution
comes from the grain boundaries.

FIG. 3. The grain-size distributions obtained from the Voronoi
construction. Grain-size distributions are shown for simulations
with intended average grain sizes of 3.28 and 5.21 nm. In both cases
the input configurations from four simulations were used to calcu-
late the distributions. Fits to log-normal~solid! and normal~dashed!
distributions are shown. Both distributions fit the data well.
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B. Minimization procedure

To simulate deformation at zero temperature a minimiza-
tion procedure was used to keep the system in or near a local
minimum in energy at all times. The deformation and mini-
mization were done simultaneously. The minimization algo-
rithm is a modified molecular dynamics simulation.47 After
each MD time step the dot product between the momentum
and the force is calculated for each atom. Any atom where
the dot product is negative gets its momentum zeroed, as it is
moving in a direction where the potential energy is increas-
ing. This minimization procedure quickly brings the system
close to a local minimum in energy, but a full convergence is
not obtained, as it would require a number of time steps at
least as great as the number of degrees of freedom in the
system. However, we find only little change in the develop-
ment of the system, when we increase the number of mini-
mization steps.

A few simulations were repeated using a conjugate gradi-
ent ~CG! minimization instead of the MD minimization al-
gorithm. The two algorithms were approximately equally ef-
ficient in these simulations, provided that the CG algorithm
was restarted approximately every 20 line minimizations.
Otherwise the CG algorithm will not minimize twice along
the same direction in the 3N-dimensional configuration
space.

C. Analysis of results

While the simulation is performed, the stress field is regu-
larly computed. The stress tensor is the derivative of the free
energy of the system with respect to the strain. The effective
medium theory allows us to define an energy per atom,
which allows us to define an ‘‘atomic’’ stress for each atom.
The stress is a suitable derivative of the energy with respect
to the interatomic distances:48–50

s i ,ab5
1

v i
S 2

pi ,api ,b

mi
1

1

2 (
j Þ i

]Epot

]r i j

r i j ,ar i j ,b

r i j
D , ~1!

wheres i ,ab is the a,b component of the stress tensor for
atom i, v i is the volume assigned to atomi (( iv i5V, where
V is the total volume of the system!, mi is the mass of atom
i, pi ,a is the a component of its momentum, andr i j is the
distance between atomsi and j (r i j ,a is a component of the
vector from atomi to j ).

The atomic stress tensor cannot be uniquely defined.
Equation 1 is based on the Virial theorem, but other defini-
tions are possible.51–53 When the atomic stress is averaged
over a region of space the various definitions quickly con-
verge to a macroscopic stress field.52,53 During the simula-
tion, stress-strain curves are calculated by averaging the
atomic stresses over the entire system.

To facilitate the analysis of the simulations the local
atomic order was examined using an algorithm known as
common neighbor analysis~CNA!.54,55 In this algorithm the
bonds between an atom and its nearest neighbors are exam-
ined to determine the crystal structure. We have used CNA
to classify atoms into three classes: fcc, hcp, and ‘‘other,’’
i.e., atoms which are neither in a local fcc nor hcp environ-
ment.

The use of CNA makes dislocations, grain boundaries and
stacking faults visible in the simulation. Intrinsic stacking
faults appear as two adjacent 111 planes of hcp atoms, ex-
trinsic stacking faults are two 111 planes of hcp atoms sepa-
rated by a single 111 plane of fcc atoms, whereas twin
boundaries will be seen as a single 111 plane of hcp atoms.
Dislocation cores and grain boundaries consist of atoms in
the ‘‘other’’ class, although grain boundaries also contain a
low number of hcp atoms.

When analyzing simulations made at finite temperatures,
the lattice vibrations may interfere with the CNA and it is
necessary to precede the CNA analysis by a short minimiza-
tion.

IV. RESULTS

During the deformation, we calculate the average stress in
the system as a function of the strain. Figure 4 shows the
stress-strain curves for the same system at different tempera-
tures. We clearly see a softening with increasing tempera-
ture. Rather large fluctuations are seen in the curves. These
are mainly thermal fluctuations and fluctuations due to single
major ‘‘events’’ in the systems~e.g., the nucleation of a dis-
location!. These fluctuations are only visible due to the small
system size.

Figures 5 and 6 show the obtained stress-strain curves
from simulations at 0 and 300 K, respectively. We see a lin-
ear elastic region followed by a plastic region with almost
constant stress. Similar results are found for palladium at 0 K
~Fig. 7!. Each stress-strain curve shown in the figures is ob-
tained by averaging over a number of simulations with dif-
ferent ~randomly produced! grain structures with the same
average grain size. A set of stress-strain curves from indi-
vidual simulations are shown in Fig. 8.

One of the rationales using a minimization procedure~i.e.,
a zero-temperature simulation! to study the deformations was
the hope that the system would evolve through a series of
local energy minima, separated by discrete events when the
applied deformation causes the minima to disappear. In this
way, the simulation would have resulted in a unique defor-
mation history for any given sample. However, the deforma-
tion turned out to happen through a very large number of

FIG. 4. Stress-strain curves for the system in Fig. 1, deformed at

different temperatures. The strain rate («̇) is 53108 s21 except at
0 K, where no strain rate can be defined~see Sec. IV D!. We see a
clear softening at increasing temperatures.
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very small processes, that could not be individually resolved
by this procedure. One symptom of this is that the individual
curves in Fig. 8 are not completely reproducible. Any even
minor change in the minimization procedure, or a perturba-
tion of the atomic coordinates, will result in a slightly differ-
ent path through configuration space, and in different fluc-
tuations in the stress-strain curves. Those differences are
suppressed when average stress-strain curves are calculated,
as in Fig. 5, and would also disappear as the system size~and
thus the number of grains! increase.

A. Young’s modulus

Young’s modulus~E! is the slope of the stress-strain
curve in the linear region. Young’s modulus is found to be
around 90–120 GPa at 0 K and it is increasing with increas-
ing grain size.

When calculating Young’s modulus from the simulation
data, a compromise must be made between getting enough

data point for a reliable fit, and staying within the clearly
linear region. We have found that a reasonable compromise
is to use data in the interval«,0.3%, this ensures that we
have enough data for a reliable fit, but results in a slight
underestimate of the Young’s modulus, as some plastic de-
formation is beginning in this interval. A smaller fitting in-
terval could be used for the zero temperature simulations, but
for consistency we used the same interval for all simulations.

Figure 9 shows Young’s modulus for a single system with
grain sized55.2 nm, simulated at different temperatures.
The observed temperature dependence ofE is approximately
260618 MPa/K, which is somewhat larger than what has
been observed experimentally (240 MPa/K! in copper with
a grain size of 200 nm.56 This may be because the Young’s
modulus of the grain boundaries is more temperature sensi-
tive than in the bulk, or it may be due to increased ‘‘creep’’
~thermally activated grain boundary sliding! in the higher-
temperature simulations; see the discussion in Sec. IV D.

B. Yield and flow stress

The onset of plastic deformation is usually described by
the yield stresssy , traditionally defined as the stress where
the strain is 0.002 larger than what would be expected from
extrapolation from the elastic region. In these simulations the

FIG. 5. Stress-strain curves for nanocrystalline copper at 0 K.
Each curve is the average over seven simulations with a given av-
erage grain size, the error bars indicate the uncertainty of the aver-
age (1s). Adapted from Ref. 21.

FIG. 6. Stress-strain curves for nanocrystalline copper at 300 K
for varying grain size. The curves for grain sizesd<5.21 nm are the
average of four simulations with a system size of 100 000 atoms
and a strain rate of 53108 s21. The simulations withd>6.56 nm
were made with a system size of 1 000 000 atoms and a strain rate
of 109 s21. The influence of this change in the strain rate is mini-
mal, see Sec. IV D and Fig. 16. One simulation was performed with
d56.56 nm, two withd513.2 nm. The thermal fluctuations are less
pronounced in the simulations with the larger system size.

FIG. 7. Stress-strain curves for nanocrystalline palladium at 0 K.
Each curve is the average over two simulations with a given aver-
age grain size.

FIG. 8. Individual stress-strain curves for seven simulations of
nanocrystalline copper with an average grain size of 5.21 nm.
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stress continues to increase after the yield point has been
reached, until it reaches a plateau~the flow stress! and be-
comes constant or slightly decreasing.

The difficulties leading to an underestimate of the
Young’s modulus thus leads to a slight overestimate of the
yield stress, and also leads to rather large uncertainties on the
yield stress. The flow stress is a far more well-defined quan-
tity. The variation of the yield and flow stresses with tem-
perature is seen in Fig. 10.

Figure 11 shows the dependence of the yield and flow
stress on the grain size at 0 K and at 300 K. A clear reverse
Hall-Petch effect is observed, i.e., a softening of the material
as the grain size is reduced, as discussed in a previous
paper.21

C. Structural changes

Figure 1 shows the structural changes during 10 % defor-
mation. Some stacking faults have appeared in the grains,
they are caused by partial dislocations~Shockley partials!
nucleating at the grain boundaries and moving through the
grains.

The radial distribution function~Fig. 2! has been changed
somewhat by the deformation. The peaks have been broad-
ened; this is mainly caused by the anisotropic stress fields in
the sample. The ‘‘background level’’ between the first two
peaks has increased a little, indicating a larger amount of
disorder in the system. Increased disorder is also seen in Fig.
1~b!, where the grain boundaries appear to have become
slightly thicker compared to the initial configuration. This is
confirmed by Fig. 12, showing the number of atoms in dif-
ferent local configurations before and after the deformation.
We see how more atoms are neither fcc nor hcp after the
deformation than before.

The grain boundaries do not appear to increase as much in
thickness at 300 K as they do at 0 K. Figure 13 shows the
change in the fraction of atoms in different local environ-

FIG. 9. Young’s modulus as a function of temperature for a
sample with an average grain size of 5.2 nm. The Young’s modulus
at 1200 K is close to zero, but could not be determined due to very
large fluctuations; see Fig. 4.

FIG. 10. Yield and flow stresses as a function of temperature.
No yield stress is given forT51200 K, as fluctuations are too large
for a meaningful determination.

FIG. 11. Hall-Petch plot of the simulations at 0 K and at 300 K,
showing a reverse Hall-Petch relationship between the grain size
and both the yield- and flow stress. Each point is the average of four
values, except for the simulations at 300 K with grain sizes of 6.56
and 13.2 nm, where only one and two simulations were performed.
The error bars indicate the 1s statistical uncertainty.

FIG. 12. The fraction of atoms in a given local crystal structure
as a function of the grain size. Two curves are given for each type
of atoms, one for the initial configurations~filled circles! and an-
other showing how the fractions have changed after 10% deforma-
tion ~open squares!. We see how the fraction of atoms in the grain
boundaries~marked ‘‘Other’’! decreases with increasing grain size,
and how more atoms are in grain boundaries and stacking faults
~hcp! after the deformation than before.
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ments during the deformation of the same system at 0 K and
at 300 K. In both cases we clearly see an increase in the
number of hcp atoms~stacking faults! due to the motion of
dislocations through the grains. We also see an increase of
the number of atoms in the grain boundaries, in particular at
0 K. The increase appears to be caused by the deformation in
the grain boundaries. Apparently, the local disorder intro-
duced in this way is partially annealed out at 300 K.

The number of atoms near stacking faults~atoms in hcp
symmetry! is also seen to increase strongly during the defor-
mation ~Figs. 1, 12, and 13!. The stacking faults appear as
partial dislocations move through the system, and they are
thus the signature of dislocation activity. At zero tempera-
ture, we do not observe cases where a second partial dislo-
cation erases the stacking faults~we observe only a very few
atoms changing from local hcp order to local fcc order!. We
can therefore use the total number of hcp-ordered atoms to
estimate an upper bound on the amount of plastic deforma-
tion caused by the dislocations.

If a dislocation with Burgers vectorbW runs through the
entire system, the dimensions of the system are changed bybW

and the strain«zz is thusbzLz
21 , wherebz is thez component

of the Burgers vector andLz is the dimension of the system
in the z direction. If the dislocation only passes through a
part of the system, the resulting deformation is reduced by
A cosf (LxLy)

21, whereA is the area of the slip,Lx andLy
are the lateral dimensions of the system, andf is the angle
between the slip plane and thexy plane. The contribution
from a slip plane to thezz component of the strain is thus
«zz5(bzLz

21)A cosf (LxLy)
21.

The maximal value ofbz is b sinf, whereb5ubW u, sincebW
lies in the slip plane. The maximal strain from the slip thus
becomes«max5bA(2V)215aA(2A6V)21 for f5p/4, as
the Burgers vector of a Shockley partial isb5a/A6, wherea
is the lattice constant andV is the volume of the simulation
cell. A slip plane of areaA results in two$111% planes of hcp
atoms, i.e., 4A(A3a2)21 atoms. The total system contains
4Va23 atoms, so the fraction of hcp atoms becomesn
5Aa(A6V)21. Hence a fractionn of hcp atoms can at most
have resulted in a strain of«max5223/2n. As the simulation
generate at most 9% hcp atoms during 10% deformation, we

get that«max'3%, provided that all slip planes and Burgers
vectors are ideally aligned. It is therefore clear that the main
deformation mode is not by dislocation motion.

Figures 14 and 15 illustrate how the main part of defor-
mation has taken place. The atoms are colored according to
their motionrelative to the global stretching of the system.
We clearly see that the upper parts of the grains have moved
down and the lower parts up, relative to what would be ex-
pected in a homogeneous deformation. This shows that the
grains do not stretch as much as in a homogeneous deforma-
tion. On the other hand, it is seen that significant deformation
has happened in the grain boundaries, as the atoms typically
are moving up on one side and down on the other side of a
grain boundary. An analysis of that deformation shows that it
is in the form of a large number of apparently uncorrelated
small slipping events, where a few atoms~or a few tens of
atoms! move relatively to reach other,21 i.e., not in the form
of collective motion in the grain boundaries. A minor part of
the plastic deformation is in the form of dislocation motion
inside the grains. The slip planes are clearly seen in Fig. 14,
in particular in the large grain in the upper left part of the
figure, where two dislocations have moved through the grain,
and a third is on its way near one of the previous slip planes.
The main deformation mode appears to be the same at zero
and at finite temperatures.

D. Strain rate

As the time scale of molecular dynamics is set by the
atomic motion, only very brief periods of time can be simu-
lated. For the size of systems discussed here 1 ns~200 000
time steps! is for all practical purposes an upper limit, al-
though for repeated simulations 0.1 ns is a more realistic
limit. One consequence of the short time scale is that very
high strain rates are required to get any reasonable deforma-
tion within the available time

The finite-temperature simulations presented in this paper
were performed at a strain rate of«̇553108 s21, unless
otherwise is stated. This is very high, but still the ends of the
system separates at velocities far below the speed of sound.

In order to investigate the influence of the strain rate, we
simulated the same deformation of the same system using
different strain rates in the range 2.53107 s21 – 1.031010

s21; see Fig. 16. A strong dependence on the strain rate is
seen for strain rates above 13109 s21. Below this ‘‘critical
strain rate’’ the strain rate dependence on the stress-strain
curves is far less pronounced. Figure 17 confirms this im-
pression. It shows the yield and flow stress as a function of
the strain rate. Experiments on ultrafine-grained (d'300
nm! Cu and Ni show a clear strain rate dependence on the
yield and flow stresses at high strain rates.57

Perhaps surprisingly, the Young’s modulus appears to de-
pend on the strain rate as well~Fig. 16!. This indicates that
some kind of plastic deformation occurs in the ‘‘linear elas-
tic’’ region. This is confirmed by stopping a simulation while
the system still appears to be in the elastic region, and then
allowing it to contract until the stresses are zero. The system
does not regain the original length: plastic deformation has
occurred.

To examine the time scale over which this deformation
occurs, a configuration was extracted from the simulation at

FIG. 13. Development of the number of atoms in different local
environments as a function of the strain, for a single simulation at
0 K and at 300 K.
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FIG. 14. ~Color! The same system as in Fig. 1~b!, but with the
atoms colors according to their motionrelative to the homogeneous
deformation. Blue atoms have moved downwards relative to what
would be expected if the deformation had been homogeneous and
elastic; red atoms have moved upwards. The scale indicates how far
the atoms have moved~in angstroms! during the 10% deformation.
The grains are seen to be blue in the upper part, and red in the lower
part, indicating that the grains have not been strained as much as the
system. This indicates that a major part of the deformation has been
in the grain boundaries. Several dislocations have moved through
the large grain in the upper-left corner. Their slip planes are clearly
seen.

FIG. 15. ~Color! The same system as in Fig. 14, but after defor-
mation at 300 K; see the caption of that figure for a description of
the color coding. The main deformation is seen to be in the grain
boundaries, as was the case at 0 K.

FIG. 16. ~Color! The effect of varying the strain rate. Stress-strain curves are shown for simulations of the same system at the same

temperature~300 K!, but with varying strain rates. A strong influence of strain rate is seen for strain rates above«̇5109 s21; below that value
the strain rate dependence is less pronounced. The simulations at the two lowest strain rates were stopped after 4% deformation.
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«̇52.53107 s21 after 0.4% deformation. The system was
held at a fixed length for 300 ps while the stress was moni-
tored; see Fig. 18. The stress is seen to decrease with a char-
acteristic time of approximately 100 ps. By plotting the
atomic motion in a plot similar to Figs. 14 and 15, it is seen
that the relaxation is due to small amounts of plastic defor-
mation in the grain boundaries. The consequence of this is
that the systems do not have time to relax completely during
the simulations, explaining the observed strain rate depen-
dence. In order to allow for complete relaxation of the sys-
tems, strain rates far below what is practically possible with
MD simulations are required.

As another consequence of the short time-scale, slower
processes will not be seen in the simulations. In particular,
most diffusional processes will be unobservable~this would
also be the case in experiments performed at these high strain
rates!. However, measurements of diffusional creep~Coble
creep! in nanocrystalline metals indicate that diffusional
creep is not a large effect.58,59

TheT50 K simulations were performed using a minimi-
zation procedure. In such simulations time is not defined,

since we are not solving an equation of motion. In a similar
way, time should not be relevant in an experiment performed
truly at zero temperature, since there will be no thermally
activated processes, and thus no way the sample can leave a
local energy minimum. So the strain rate will not have an
effect on the results, providing it is low enough to prevent a
heating of the sample, and providing the minimization pro-
cedure is fully converged. The minimization simulations can
thus be seen as a model for idealized experiments at zero
temperature in the low strain rate limit, where there is time
for the heat generated by the deformation to be removed.

E. Grain rotation

Grain rotation has previously been reported in simulations
of nanocrystalline nickel.17 We have investigated the rotation
of the grains during some of the simulations, the results are
summarized in Fig. 19. The figure shows the rotation of five
randomly selected grains as a function of strain and tempera-
ture. The rotations were identified by a three-dimensional
Fourier transform of the positions of the atoms in the grains.

We see that the grain rotation increases with increasing
temperature. There is a large variation between how much
the individual grains rotate. The grains with the largest rota-
tions keep the same axis of rotation during the entire defor-
mation, whereas the grains that only rotate a little have a
varying axis of rotation. Probably some grains are in a local
environment where a significant rotation results in an advan-
tageous deformation of the sample which reduces the stress.
Other grains are randomly rotated as the many small defor-
mation processes in the grain boundaries occur.

F. Porosity

As the observed reverse Hall-Petch effect is often ex-
plained as an artifact of sample porosity~see Sec. V B!, we
found it relevant to study how pores influence the mechani-
cal properties. The void structure in experimentally produced
samples is usually not well known, so we chose to study
several different types of voids. In all cases the voids re-
sulted in a reduction of both the Young’s modulus and the
flow stress; see Fig. 20.

FIG. 17. Summary of the effect of varying the strain rate. Both
the yield stress and the flow stress are seen to vary with the strain

rate («̇), strongest for«̇.109 s21.

FIG. 18. Sample relaxation in the ‘‘elastic’’ region. The defor-

mation is stopped after 0.4% deformation at«̇52.53107 s21 and
T5300 K. The stress is seen to decrease with a characteristic time
of ;100 ps, stabilizing on a value of 2/3 the original stress. The
thick black line is an exponential fit.

FIG. 19. Grain rotation as a function of strain and temperature.
The rotation of five randomly selected grains were followed in
simulations at different temperatures. The average grain size is 5.2
nm. The error bars indicate the 1s spread in the rotations.
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Elliptical voids. These cracklike voids were created by
removing all atoms within an oblate ellipsoid with an axis
ratio of 3.16. The short axis can be oriented along the pulling
direction~the crack is in thexy plane! or perpendicular to it
~the crack is in theyz axis!. The former orientation corre-
sponds to cracks that are activated by the applied stress field,
the effect of these cracks is therefore expected to be much
larger than the effect of the ‘‘inactive’’ cracks. This is clearly
seen in Fig. 20.

Missing grains.There have been reports of pore sizes
comparable to~and proportional to! the grain size.60,61 To
mimic this, we have tried to remove whole grains from the
system. As the grains are approximately equiaxed, it is not
surprising that the effect of removing a grain is intermediate
between the effects of removing ellipsoids in the two orien-
tations, provided that approximately the same number of at-
oms are removed.

Missing grain-boundary atoms.In samples experimen-
tally produced by compacting a powder, it is reasonable to
assume that the porosity will mainly be in the form of~pos-
sibly gas-filled! voids between the grains. There is also some

experimental evidence that this is indeed the case.61,62 To
mimic this, we have removed all atoms in the grain bound-
aries within one or nine spherical regions in the sample, cre-
ating one large or nine small voids in the grain boundaries.
This type of voids have the largest effect on the materials
properties, giving a reduction of 35–40% in the Young’s
modulus and flow stress for a 12.5% porosity. It seems rather
natural that a large effect is obtained with the voids concen-
trated in the grain boundaries since we know that the main
part of the deformation is carried by these boundaries.

V. DISCUSSION

A. Elastic properties

From our simulations we get values of the Young’s
modulus around 100 GPa at 0 K. This should be compared to
the value found for single crystals using this potential:
150 GPa at 0 K~Hill average calculated from the anisotropic
elastic constantsC115173 GPa, C125116 GPa, C44591
GPa!. The experimental value for macrocrystalline copper is
124 GPa at 300 K.63 A significant reduction of the Young’s
modulus is thus seen in the nanocrystalline phase.

A similar reduction of Young’s modulus is seen in simu-
lations of nanocrystalline metals grown from a molten
phase.11 The low value is usually explained by a large vol-
ume fraction of the atoms being in the grain boundaries.64

These atoms experience a different atomic environment,
which could result in a reduction of the elastic moduli simi-
lar to what is seen in amorphous metals. This local reduction
of the elastic constants in grain boundaries is confirmed by
atomistic simulations.65

Experimental measurements of the Young’s modulus of
high quality ~i.e., low-porosity! samples of nanocrystalline
copper and palladium show a reduction in Young’s modulus
of at most a few percent when correcting for the remaining
porosity.60 These results were obtained for significantly
larger grain sizes than were used in the simulations. The
reduction of Young’s modulus that we observe in these
simulations will be difficult to detect experimentally, due to
the much lower volume fraction of atoms in the grain bound-
aries for typical grain sizes in high quality samples (*20
nm!.

B. Reverse Hall-Petch effect

A reverse Hall-Petch effect in nanocrystalline copper was
first observed in nanocrystalline Cu and Pd by Chokshiet al.
in 1989.31 Since then, there have been numerous observa-
tions of softening at very small grain sizes.32–34

The reverse Hall-Petch effect seems to depend strongly on
the sample preparation technique used and on the sample
history, perhaps indicating that in most cases the reverse
Hall-Petch effect is caused by various kinds of defects in the
samples. Surface defects alone have been shown to be able to
decrease the strength of nanocrystalline metals by a factor of
5,58,66 and recent studies have shown that even very small
amounts of porosity can have a dramatic effect on the
strength.60,67 Improved inert gas condensation techniques68

have reduced the porosity resulting in samples with densities
above 98% of the fully dense value. In these samples the
ordinary Hall-Petch effect is seen to continue down to grain

FIG. 20. Effect of voids on the Young’s modulus~top! and on
the flow stress~bottom!, showing a decrease of both quantities with
increasing void fraction. The voids were generated by removing
selected atoms, the ‘‘void fraction’’ is the fraction of atoms re-
moved. Different methods were used to select the atoms to be re-
moved; see Sec. IV F.
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sizes around 15 nm.60 There are only few data points below
that grain size, but apparently no further increase in the hard-
ness is seen. It is suggested that most of the observations of
a reverse Hall-Petch effect in nanocrystalline metals are a
result of poor sample quality.60 This impression is supported
by literature studies32,69indicating that the reverse Hall-Petch
effect is mainly seen when the grain size is varied by re-
peated annealing of a single sample, whereas an ordinary
Hall-Petch relationship is seen when as-prepared samples are
used.

However, there does seem to be a deviation from the
Hall-Petch effect for grain sizes below approximately 15 nm,
where the Hall-Petch slope is seen to decrease or vanish in
samples produced with various techniques. This is seen in
Cu samples produced by inert gas condensation followed by
warm compaction~sample densities above 98%! ~Ref. 60!
and in electroplated Ni~claimed to be porosity free!.70,71

There are theoretical arguments for expecting that the
Hall-Petch relation ceases to be valid for grain sizes below
;20 nm: as the grain size becomes too small, dislocation
pileups are no longer possible, and the usual explanation for
Hall-Petch behavior does not apply.59,72,73

Many models have been proposed to explain why a re-
verse Hall-Petch effect is sometimes seen. Chokshiet al.31

proposed that enhanced Coble creep, i.e., creep by vacancy
diffusion in the grain boundaries, should result in a softening
at the smallest grain sizes as the creep rate increases with
decreasing grain size~d! asd23. Direct measurements of the
creep rate have however ruled this out.59,74

It has been suggested that the grain boundaries in nano-
crystalline metals have a different structure, making them
more transparent to dislocations than ‘‘ordinary’’ grain
boundaries.75–77If it becomes possible for the dislocations to
run through several grains as the grain size is reduced, the
Hall-Petch relations would break down. In our simulations,
we have not observed dislocations moving through more
than one grain.

If the Hall-Petch effect is explained by appealing to dis-
location sources in the grain boundaries, the Hall-Petch rela-
tionship is expected to break down when the grain sizes be-
comes so low that there are no longer dislocation sources in
all grain boundaries78 ~assuming a constant density of dislo-
cation sources in the grain boundaries!.

Hahn and co-workers79,80 suggest that the reverse Hall-
Petch effect is caused by deformation in the grain bound-
aries. If a grain boundary slides, stress concentrations build
up where the grain boundary ends, limiting further sliding.
Substantial sliding on a macroscopic scale occurs when slid-
ing occurs on slide planes consisting of many aligned grain
boundaries; the sliding is hindered by the roughness of the
slide plane due to its consisting of many grain boundaries.
As the grain size is reduced and becomes comparable to the
grain-boundary width, the roughness of such slide planes de-
creases and the stress required for mesoscopic sliding de-
creases. This would result in a reverse Hall-Petch effect.
They estimate the transition from normal to reverse Hall-
Petch effect to occur at grain sizes near 50 nm for Cu.79

The simulations reported in the present paper indicate that
the main deformation mechanism at these grain sizes is in-

deed sliding in the grain boundaries. However, it is not clear
if the proposed ‘‘collective’’ sliding events are occurring, it
appears that sliding occurs on individual grain boundaries,
and that the resulting stress buildup is relieved through dis-
location motion in the grains. There is a competition between
the ordinary deformation mode~dislocations! and the grain-
boundary sliding. As the grain size is increased, the disloca-
tion motion is eventually expected to dominate, and we ex-
pect a transition to a behavior more like what is seen in
coarse-grained materials, including a normal Hall-Petch ef-
fect. The transition is beyond what can currently be simu-
lated at the atomic scale, but we do see a weak increase in
the dislocation activity when the grain size is increased: The
increase in the fraction of hcp atoms during a simulation is
increasing slightly with the grain size~Fig. 12!.

VI. CONCLUSIONS

Molecular dynamics and related techniques have been
shown to be a useful approach to study the behavior of nano-
crystalline metals. We have in detail investigated the plastic
deformation of nanocrystalline copper, and shown that the
main deformation mode is sliding in the grain boundaries.
The sliding happens through a large number of small, appar-
ently uncorrelated events, where a few grain boundary atoms
~or a few tens of atoms! move past each other. It remains the
main deformation mechanism at all grain sizes studied~up to
13 nm!, even at zero temperature. As the grain boundaries
are the main carriers of the deformation, decreasing the num-
ber of grain boundaries by increasing the grain size leads to
a hardening of the material; areverse Hall-Petch effect. This
is observed in the simulations, both forT50 K and for T
5300 K.

The Young’s moduli of the nanocrystalline systems are
found to be reduced somewhat compared to the experimental
value for polycrystalline copper with macroscopic grain
sizes, decreasing with decreasing grain size. This indicates
that the grain boundaries are elastically softer than the grain
interiors. The Young’s modulus is decreasing with increas-
ing temperature at a rate somewhat above what is seen ex-
perimentally in coarser-grained copper.

Pores in the samples have a large effect on both the
Young’s modulus and the flow stress. This effect is enhanced
if the pores are mainly in the grain boundaries, as one could
expect in samples produced experimentally by inert gas con-
densation. Sample porosity can explain a large number of
experiments showing reverse Hall-Petch effect, but the soft-
ening due to grain boundary sliding may be important for
high-quality samples with grain sizes close to the lower limit
of what can be reached experimentally.
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