21 research outputs found

    Rhyolitic tephra horizons in northwestern Europe and Iceland from the AD 700s-800s: a potential alternative for dating first human impact

    Get PDF
    The distribution and geochemistry of four rhyolitic tephra horizons from Iceland dated to the ad 700s–800s is assessed. These include the rhyolitic phase of the Landnám tephra (ad 870s), the ad 860 layer, a previously unrecorded tephra called the GA4–85 layer (c. ad 700–800) and the Tjïrnuvík tephra (c. ad 800s). The ad 860 and GA4–85 layers were first found in peat bogs in north Ireland. They are here correlated with equivalent horizons on Iceland which were found below the Landnám tephra (c. ad 870s). This time period is considered important in the North Atlantic region, because it coincides with a phase of human settlement in Iceland and the Faroe Islands. The establishment of a detailed tephrochronology may provide a tool for exact dating of sediment successions and sediments associated with archaeological excavations. Caution must be taken especially on Iceland where the Landnám tephra is often used for dating archaeological sites. This investigation show that several rhyolitic tephra horizons occur close in time to the Landnám tephra, and that mistakes can be made if detailed geochemical analyses are not carried out, especially in areas which are distal to the source of the Landnám tephra (the Veidivötn and Torfajökull volcanic systems, southern Iceland)

    Moving forwards? Palynology and the human dimension

    Get PDF
    For the greater part of the last century, anthropogenic palynology has made a sustained contribution to archaeology and to Quaternary science in general, and pollen-analytical papers have appeared in Journal of Archaeological Science since its inception. The present paper focuses selectively upon three areas of anthropogenic palynology, enabling some assessment as to whether the field is advancing: land-use studies, archaeological site study, and modelling. The Discussion also highlights related areas including palynomorph identification and associated proxies. There is little doubt that anthropogenic palynology has contributed to the vitality of pollen analysis in general, and although published research can be replicative or incremental, site- and landscape-based studies offer fresh data for further analysis and modelling. The latter allows the testing of both palynological concepts and inferences and can inform archaeological discovery and imagination. Archaeological site studies are often difficult, but palynology can still offer much to the understanding of occupation sites and the discernment of human behaviour patterns within sites

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF
    Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-

    The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)

    Get PDF

    Historical ecology on Sandoy, Faroe Islands: palaeoenvironmental and archaeological perspectives

    No full text
    We present palaeoenvironmental, geomorphological, archaeological, and place-name data which allow a holistic assessment of the history of landscape change on Sandoy, Faroe Islands, especially in terms of the changes that occurred in response to the colonization of the island by humans. In contrast to other situations in the North Atlantic region, there is considerable continuity in the patterns and processes of landscape evolution across the initial settlement horizon. Many of the characteristic features of postsettlement North Atlantic landscapes - absence of trees, widespread blanket mires, high rates of soil erosion - were already in place when the first people arrived. Although human impact on Sandoy appears to have been light, conversely, the unusual environment forced major alterations of the subsistence economy imported by the colonists. Settlement-era archaeological records suggest that, from the start, patterns of resource use differed substantially from the regional norm, and these differences became amplified over time as the Faroese economy created a locally sustainable cultural landscape

    Early-Norse home-field productivity in the Faroe Islands

    No full text
    In the early Norse settlement period throughout the North Atlantic, effective management of the land area surrounding the domestic settlement, the home-field, was essential. In the Faroe Islands, the extent of home-field land suitable for growing fodder or cereal crops is limited by topography and by drainage highlighting the need to optimize the management of these land areas. In this paper we examine the management of home-fields through a modeling approach, allowing the long-term sustainability of the past agrarian system in the home-field area to be examined. The CENTURY agroecosystem model is used to predict soil organic carbon levels and the potential hay meadow and cereal production for locations around three settlements on the islands of Sud–eroy, Sandoy, and Eysteroy. Using paleoclimatic data and measurements from buried soil materials alongside ethnographic and historical evidence on land management, the results from this model reveal maximum hay and barley yields attainable through early agrarian practices. Comparisons between modeled outputs and recorded yields from the nineteenth century show that there is a strong moderating influence on longer-term climatic fluctuations. The role of soil management is emphasized through comparison of long-term climate/yield data. This has been undertaken using statistical time series analyses, which reveal fluctuations in yield related to climate are relatively slight, except going into the twentieth century. It is concluded that intensity of soil management is the primary determinant of yield and could buffer cereal and hay yields against climatic downturns,and that from a low yield baseline in the early Norse settlement period, yield improves to an equilibrium level by the twelfth century
    corecore