9 research outputs found

    The Effect of Oral Leucine on Protein Metabolism in Adolescents with Type 1 Diabetes Mellitus

    Get PDF
    Lack of insulin results in a catabolic state in subjects with insulin-dependent diabetes mellitus which is reversed by insulin treatment. Amino acid supply, especially branched chain amino acids such as leucine, enhances protein synthesis in both animal and human studies. This small study was undertaken to assess the acute effect of supplemental leucine on protein metabolism in adolescents with type 1 diabetes. L-[1-13C] Leucine was used to assess whole-body protein metabolism in six adolescent females (16–18 yrs) with type 1 diabetes during consumption of a basal diet (containing 58 μmoles leucine/kg/h) and the basal diet with supplemental leucine (232 μmoles leucine/kg/h). Net leucine balance was significantly higher with supplemental leucine (56.33 ± 12.13 μmoles leucine/kg body weight/hr) than with the basal diet (−11.7 ± −5.91, P < .001) due to reduced protein degradation (49.54 ± 18.80 μmoles leucine/kg body weight/hr) compared to the basal diet (109 ± 13.05, P < .001)

    Image_1_Targeting acid ceramidase ameliorates fibrosis in mouse models of non-alcoholic steatohepatitis.TIFF

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide, and is characterized by the accumulation of fat in the liver. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a leading cause of liver transplantation. Fibrosis is the histologic feature most associated with liver-related morbidity and mortality in patients with NASH, and treatment options remain limited. In previous studies, we discovered that acid ceramidase (aCDase) is a potent antifibrotic target using human hepatic stellate cells (HSCs) and models of hepatic fibrogenesis. Using two dietary mouse models, we demonstrate that depletion of aCDase in HSC reduces fibrosis without worsening metabolic features of NASH, including steatosis, inflammation, and insulin resistance. Consistently, pharmacologic inhibition of aCDase ameliorates fibrosis but does not alter metabolic parameters. The findings suggest that targeting aCDase is a viable therapeutic option to reduce fibrosis in patients with NASH.</p

    Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates.

    No full text
    Sphingosine-1-phosphate (S1P) plays important roles in cardiovascular development and immunity. S1P is abundant in plasma because erythrocytes-the major source of S1P-lack any S1P-degrading activity; however, much remains unclear about the source of the plasma S1P precursor, sphingosine (SPH), derived mainly from the hydrolysis of ceramides by the action of ceramidases that are encoded by 5 distinct genes, acid ceramidase 1 ( ASAH1)/ Asah1, ASAH2/ Asah2, alkaline ceramidase 1 ( ACER1)/ Acer1, ACER2/ Acer2, and ACER3/ Acer3, in humans/mice. Previous studies have reported that knocking out Asah1 or Asah2 failed to reduce plasma SPH and S1P levels in mice. In this study, we show that knocking out Acer1 or Acer3 also failed to reduce the blood levels of SPH or S1P in mice. In contrast, knocking out Acer2 from either whole-body or the hematopoietic lineage markedly decreased the blood levels of SPH and S1P in mice. Of interest, knocking out Acer2 from whole-body or the hematopoietic lineage also markedly decreased the levels of dihydrosphingosine (dhSPH) and dihydrosphingosine-1-phosphate (dhS1P) in blood. Taken together, these results suggest that ACER2 plays a key role in the maintenance of high plasma levels of sphingoid base-1-phosphates-S1P and dhS1P-by controlling the generation of sphingoid bases-SPH and dhSPH-in hematopoietic cells.-Li, F., Xu, R., Low, B. E., Lin, C.-L., Garcia-Barros, M., Schrandt, J., Mileva, I., Snider, A., Luo, C. K., Jiang, X.-C., Li, M.-S., Hannun, Y. A., Obeid, L. M., Wiles, M. V., Mao, C. Alkaline ceramidase 2 is essential for the homeostasis of plasma sphingoid bases and their phosphates. FASEB J 2018 Jun; 32(6):3058-3069

    Feeding Acutely Stimulates Fibrinogen Synthesis in Healthy Young and Elderly Adults12

    No full text
    Fibrinogen is a positive acute-phase protein and its hepatic synthesis is enhanced following inflammation and injury. However, it is not clear whether fibrinogen synthesis is also responsive to oral nutrients and whether the response to a meal may be affected by age. Our aim in this study was to investigate the acute effect of oral feeding on fibrinogen synthesis in both young and elderly men and women. Fibrinogen synthesis was determined in 3 separate occasions from the incorporation of l[2H5]phenylalanine (43 mg/kg body weight) in 8 young (21–35 y) and 8 elderly (>60 y) participants following the ingestion of water (control), a complete liquid meal (15% protein, 30% fat, and 55% carbohydrate), or only the protein component of the meal. The ingestion of the complete meal enhanced fibrinogen fractional synthesis rates (FSR) by 17 ± 6% in the young and by 38 ± 10% in the elderly participants compared with the water meal (P < 0.02). A comparable stimulation of FSR occurred with only the protein component of the meal in both young (29 ± 7%) and elderly participants (41 ± 9%) compared with the water meal (P < 0.005). Similar results were obtained when fibrinogen synthesis was expressed as absolute synthesis rates (i.e. mg·kg−1·d−1). The results demonstrate that fibrinogen synthesis is acutely stimulated after ingestion of a meal and that this effect can be reproduced by the protein component of the meal alone, both in young and elderly adults
    corecore