209 research outputs found

    The Summula de Summa Raymundi in Gordan MS 95, Bryn Mawr College

    Get PDF
    Raymond of Peñafort’s Summa de casibus conscientiae, including its fourth book, the Summa de matrimonio, was one of the most successful texts for pastors and confessors composed in the Middle Ages. Written by a Dominican friar in the thirteenth century, it treated cases of conscience in a systematic manner. It also examined matrimony and the other sacraments. The Summa was subject to detailed commentary by William of Rennes, updates by John of Freiburg reflecting new papal pronouncements, and abridgment for pastors’ greater convenience. One important summary was done in Latin verse, a work attributed to Adam of Aldersbach, a Cistercian monk. Eventually Adam’s Summula de summa Raymundi itself received a detailed prose commentary. This commented version was printed in Cologne in the late fifteenth century. Gordan Manuscript 95 at Bryn Mawr College, from the collection of Phyllis Goodhart Gordan, contains Raymond’s Summa with his commentary on the trees of consanguinity and affinity, which indicated whether couples were not permitted to marry because of blood kinship or sexual contact. It concludes with an extended extract from Adam’s work added after the texts by Raymond had been copied. That extract varies from the printed version and two manuscripts located at the University of Pennsylvania. The excerpts display differences from the other available texts of Adam’s work, including additional lines of verse, suggesting that it was drawn from a different manuscript tradition

    Collecting to the Core--The Renaissance: Secular and Sacred

    Get PDF

    Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma

    Get PDF
    Acknowledgments We thank Dr Stuart MacGregor for his input on the study proposal and review of prior versions of this manuscript. We also thank all patients and controls for participating in this study. The MD Anderson controls were drawn from dbGaP (study accession: phs000187.v1.p1). Genotyping of these controls were done through the University of Texas MD Anderson Cancer Center (UTMDACC) and the Johns Hopkins University Center for Inherited Disease Research (CIDR). We acknowledge the principal investigators of this study: Christopher Amos, Qingyi Wei, and Jeffrey E. Lee. Controls from the Genome-Wide Association Study of Parkinson Disease were obtained from dbGaP (study accession: phs000196.v2.p1). This work, in part, used data from the National Institute of Neurological Disorders and Stroke (NINDS) dbGaP database from the CIDR: NeuroGenetics Research Consortium Parkinson’s disease study. We acknowledge the principal investigators and coinvestigators of this study: Haydeh Payami, John Nutt, Cyrus Zabetian, Stewart Factor, Eric Molho, and Donald Higgins. Controls from the Chronic Renal Insufficiency Cohort (CRIC) were drawn from dbGaP (study accession: phs000524.v1.p1). The CRIC study was done by the CRIC investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Data and samples from CRIC reported here were supplied by NIDDK Central Repositories. This report was not prepared in collaboration with investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the NIDDK Central Repositories, or the NIDDK. We acknowledge the principal investigators and the project officer of this study: Harold I Feldman, Raymond R Townsend, Lawrence J. Appel, Mahboob Rahman, Akinlolu Ojo, James P. Lash, Jiang He, Alan S Go, and John W. Kusek. The following UK hospitals participated in sample collection through the Stomach and Oesophageal Cancer Study (SOCS) collaboration network: Addenbrooke’s Hospital, University College London, Bedford Hinchingbrooke Hospital, Peterborough City Hospital, West Suffolk Norfolk and Norwich University Hospital, Churchill Hospital, John Hospital, Velindre Hospital, St Bartholomew’s Hospital, Queen’s Burton, Queen Elisabeth Hospital, Diana Princess of Wales, Scunthorpe General Hospital, Royal Devon & Exeter Hospital, New Cross Hospital, Belfast City Hospital, Good Hope Hospital, Heartlands Hospital, South Tyneside District General Hospital, Cumberland Infirmary, West Cumberland Hospital, Withybush General Hospital, Stoke Mandeville Hospital, Wycombe General Hospital, Wexham Park Hospital, Southend Hospital, Guy’s Hospital, Southampton General Hospital, Bronglais General Hospital, Aberdeen Royal Infirmary, Manor Hospital, Clatterbridge Centre for Oncology, Lincoln County Hospital, Pilgrim Hospital, Grantham & District Hospital, St Mary’s Hospital London, Croydon University Hospital, Whipps Cross University Hospital, Wansbeck General Hospital, Hillingdon Hospital, Milton Keynes General Hospital, Royal Gwent Hospital, Tameside General Hospital, Castle Hill Hospital, St Richard’s Hospital, Ipswich Hospital, St Helens Hospital, Whiston Hospital, Countess of Chester Hospital, St Mary’s Hospital IOW, Queen Alexandra Hospital, Glan Clwyd Hospital, Wrexham Maelor Hospital, Darent Valley Hospital, Royal Derby Hospital, Derbyshire Royal Infirmary, Scarborough General Hospital, Kettering General Hospital, Kidderminster General Hospital, Royal Lancaster Infirmary, Furness General Hospital, Westmorland General Hospital, James Cook University Hospital, Friarage Hospital, Stepping Hill Hospital, St George’s Hospital London, Doncaster Royal Infirmary, Maidstone Hospital, Tunbridge Hospital, Prince Charles Hospital, Hartlepool Hospital, University Hospital of North Tees, Ysbyty Gwynedd, St. Jame’s University Hospital, Leeds General Infirmary, North Hampshire Hospital, Royal Preston Hospital, Chorley and District General, Airedale General Hospital, Huddersfield Royal Infirmary, Calderdale Royal Hospital, Torbay District General Hospital, Leighton Hospital, Royal Albert Edward Infirmary, Royal Surrey County Hospital, Bradford Royal Infirmary, Burnley General Hospital, Royal Blackburn Hospital, Royal Sussex County Hospital, Freeman Hospital, Royal Victoria Infirmary, Victoria Hospital Blackpool, Weston Park Hospital, Royal Hampshire County Hospital, Conquest Hospital, Royal Bournemouth General Hospital, Mount Vernon Hospital, Lister Hospital, William Harvey Hospital, Kent and Canterbury Hospital, Great Western Hospital, Dumfries and Galloway Royal Infirmary, Poole General Hospital, St Hellier Hospital, North Devon District Hospital, Salisbury District Hospital, Weston General Hospital, University Hospital Coventry, Warwick Hospital, George Eliot Hospital, Alexandra Hospital, Nottingham University Hospital, Royal Chesterfield Hospital, Yeovil District Hospital, Darlington Memorial Hospital, University Hospital of North Durham, Bishop Auckland General Hospital, Musgrove Park Hospital, Rochdale Infirmary, North Manchester General, Altnagelvin Area Hospital, Dorset County Hospital, James Paget Hospital, Derriford Hospital, Newham General Hospital, Ealing Hospital, Pinderfields General Hospital, Clayton Hospital, Dewsbury & District Hospital, Pontefract General Infirmary, Worthing Hospital, Macclesfield Hospital, University Hospital of North Staffordshire, Salford Royal Hospital, Royal Shrewsbury Hospital, and Manchester Royal Infirmary. Conflict of interest The authors disclose no conflicts. Funding This work was primarily funded by the National Institutes of Health (NIH) (R01CA136725). The funders of the study had no role in the design, analysis, or interpretation of the data, nor in writing or publication decisions related to this article. Jing Dong was supported by a Research Training Grant from the Cancer Prevention and Research Institute of Texas (CPRIT; RP160097) and the Research and Education Program Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin (AHW). Quinn T. Ostrom was supported by RP160097. Puya Gharahkhani was supported by a grant from National Health and Medical Research Council of Australia (1123248). Geoffrey Liu was supported by the Alan B. Brown Chair in Molecular Genomics and by the CCO Chair in Experimental Therapeutics and Population Studies. The University of Cambridge received salary support for Paul D. Pharoah from the NHS in the East of England through the Clinical Academic Reserve. Brian J. Reid was supported by a grant (P01CA91955) from the NIH/National Cancer Institute (NCI). Nicholas J. Shaheen was supported by a grant (P30 DK034987) from NIH. Thomas L. Vaughan was supported by NIH Established Investigator Award K05CA124911. Michael B. Cook was supported by the Intramural Research Program of the NCI, NIH, Department of Health and Human Services. Douglas A. Corley was supported by the NIH grants R03 KD 58294, R21DK077742, and RO1 DK63616 and NCI grant R01CA136725. Carlo Maj was supported by the BONFOR-program of the Medical Faculty, University of Bonn (O-147.0002). Jesper Lagergren was supported by the United European Gastroenterology (UEG) Research Prize. David C. Whiteman was supported by fellowships from the National Health and Medical Research Council of Australia (1058522, 1155413).Peer reviewedPostprin

    No Association Between Vitamin D Status and Risk of Barrett's Esophagus or Esophageal Adenocarcinoma: A Mendelian Randomization Study.

    Get PDF
    BACKGROUND & AIMS: Epidemiology studies of circulating concentrations of 25 hydroxy vitamin D (25(OH)D) and risk of esophageal adenocarcinoma (EAC) have produced conflicting results. We conducted a Mendelian randomization study to determine the associations between circulating concentrations of 25(OH)D and risks of EAC and its precursor, Barrett's esophagus (BE). METHODS: We conducted a Mendelian randomization study using a 2-sample (summary data) approach. Six single-nucleotide polymorphisms (SNPs; rs3755967, rs10741657, rs12785878, rs10745742, rs8018720, and rs17216707) associated with circulating concentrations of 25(OH)D were used as instrumental variables. We collected data from 6167 patients with BE, 4112 patients with EAC, and 17,159 individuals without BE or EAC (controls) participating in the Barrett's and Esophageal Adenocarcinoma Consortium, as well as studies from Bonn, Germany, and Cambridge and Oxford, United Kingdom. Analyses were performed separately for BE and EAC. RESULTS: Overall, we found no evidence for an association between genetically estimated 25(OH)D concentration and risk of BE or EAC. The odds ratio per 20 nmol/L increase in genetically estimated 25(OH)D concentration for BE risk estimated by combining the individual SNP association using inverse variance weighting was 1.21 (95% CI, 0.77-1.92; P = .41). The odds ratio for EAC risk, estimated by combining the individual SNP association using inverse variance weighting, was 0.68 (95% CI, 0.39-1.19; P = .18). CONCLUSIONS: In a Mendelian randomization study, we found that low genetically estimated 25(OH)D concentrations were not associated with risk of BE or EAC

    Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis.

    Get PDF
    BACKGROUND: Oesophageal adenocarcinoma represents one of the fastest rising cancers in high-income countries. Barrett's oesophagus is the premalignant precursor of oesophageal adenocarcinoma. However, only a few patients with Barrett's oesophagus develop adenocarcinoma, which complicates clinical management in the absence of valid predictors. Within an international consortium investigating the genetics of Barrett's oesophagus and oesophageal adenocarcinoma, we aimed to identify novel genetic risk variants for the development of Barrett's oesophagus and oesophageal adenocarcinoma. METHODS: We did a meta-analysis of all genome-wide association studies of Barrett's oesophagus and oesophageal adenocarcinoma available in PubMed up to Feb 29, 2016; all patients were of European ancestry and disease was confirmed histopathologically. All participants were from four separate studies within Europe, North America, and Australia and were genotyped on high-density single nucleotide polymorphism (SNP) arrays. Meta-analysis was done with a fixed-effects inverse variance-weighting approach and with a standard genome-wide significance threshold (p<5 × 10-8). We also did an association analysis after reweighting of loci with an approach that investigates annotation enrichment among genome-wide significant loci. Furthermore, the entire dataset was analysed with bioinformatics approaches-including functional annotation databases and gene-based and pathway-based methods-to identify pathophysiologically relevant cellular mechanisms. FINDINGS: Our sample comprised 6167 patients with Barrett's oesophagus and 4112 individuals with oesophageal adenocarcinoma, in addition to 17 159 representative controls from four genome-wide association studies in Europe, North America, and Australia. We identified eight new risk loci associated with either Barrett's oesophagus or oesophageal adenocarcinoma, within or near the genes CFTR (rs17451754; p=4·8 × 10-10), MSRA (rs17749155; p=5·2 × 10-10), LINC00208 and BLK (rs10108511; p=2·1 × 10-9), KHDRBS2 (rs62423175; p=3·0 × 10-9), TPPP and CEP72 (rs9918259; p=3·2 × 10-9), TMOD1 (rs7852462; p=1·5 × 10-8), SATB2 (rs139606545; p=2·0 × 10-8), and HTR3C and ABCC5 (rs9823696; p=1·6 × 10-8). The locus identified near HTR3C and ABCC5 (rs9823696) was associated specifically with oesophageal adenocarcinoma (p=1·6 × 10-8) and was independent of Barrett's oesophagus development (p=0·45). A ninth novel risk locus was identified within the gene LPA (rs12207195; posterior probability 0·925) after reweighting with significantly enriched annotations. The strongest disease pathways identified (p<10-6) belonged to muscle cell differentiation and to mesenchyme development and differentiation. INTERPRETATION: Our meta-analysis of genome-wide association studies doubled the number of known risk loci for Barrett's oesophagus and oesophageal adenocarcinoma and revealed new insights into causes of these diseases. Furthermore, the specific association between oesophageal adenocarcinoma and the locus near HTR3C and ABCC5 might constitute a novel genetic marker for prediction of the transition from Barrett's oesophagus to oesophageal adenocarcinoma. Fine-mapping and functional studies of new risk loci could lead to identification of key molecules in the development of Barrett's oesophagus and oesophageal adenocarcinoma, which might encourage development of advanced prevention and intervention strategies. FUNDING: US National Cancer Institute, US National Institutes of Health, National Health and Medical Research Council of Australia, Swedish Cancer Society, Medical Research Council UK, Cambridge NIHR Biomedical Research Centre, Cambridge Experimental Cancer Medicine Centre, Else Kröner Fresenius Stiftung, Wellcome Trust, Cancer Research UK, AstraZeneca UK, University Hospitals of Leicester, University of Oxford, Australian Research Council

    Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line.</p> <p>Methods</p> <p>The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-<it>ras</it>, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice. Sensitivity towards chemotherapy was analysed by MTT assay.</p> <p>Results</p> <p>PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice resulted in formation of primary tumors and spontaneous lung metastasis.</p> <p>Conclusion</p> <p>The established PaCa 5061 cell line and its injection into pfp<sup>-/-</sup>/rag2<sup>-/- </sup>mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.</p

    Postoperative outcomes in oesophagectomy with trainee involvement

    Get PDF
    BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
    corecore