408 research outputs found

    Modelling production-consumption flows of goods in Europe: the trade model within Transtools3

    Get PDF
    The paper presents a new model for trade flows in Europe that is integrated with a logistics model for transport chain choice through Logsum variables. Logsums measures accessibility across an entire multi-modal logistical chain, and are calculated from a logistics model that has been estimated on disaggregated micro data and then used as an input variable in the trade model. Using Logsums in a trade model is new in applied large-scale freight models, where previous models have simply relied on the distance (e.g. crow-fly) between zones. This linkage of accessibility to the trade model makes it possible to evaluate how changes in policies on transport costs and changes in multi-modal networks will influence trade patterns. As an example the paper presents outcomes for a European-wide truck tolling scenario, which showcases to which extent trade is influenced by such a policy. The paper discusses how such a complex model can be estimated and considers the choice of mathematical formulation and the link between the trade model and logistics model. In the outcomes for the tolling scenario we decompose the total effects into effects from the trade model and effects from the logistics model

    The structural basis of Cdc7-Dbf4 kinase dependent targeting and phosphorylation of the MCM2-7 double hexamer

    Get PDF
    The controlled assembly of replication forks is critical for genome stability. The Dbf4-dependent Cdc7 kinase (DDK) initiates replisome assembly by phosphorylating the MCM2-7 replicative helicase at the N-terminal tails of Mcm2, Mcm4 and Mcm6. At present, it remains poorly understood how DDK docks onto the helicase and how the kinase targets distal Mcm subunits for phosphorylation. Using cryo-electron microscopy and biochemical analysis we discovered that an interaction between the HBRCT domain of Dbf4 with Mcm2 serves as an anchoring point, which supports binding of DDK across the MCM2-7 double-hexamer interface and phosphorylation of Mcm4 on the opposite hexamer. Moreover, a rotation of DDK along its anchoring point allows phosphorylation of Mcm2 and Mcm6. In summary, our work provides fundamental insights into DDK structure, control and selective activation of the MCM2-7 helicase during DNA replication. Importantly, these insights can be exploited for development of novel DDK inhibitors

    aPKC Inhibition by Par3 CR3 Flanking Regions Controls Substrate Access and Underpins Apical-Junctional Polarization

    Get PDF
    Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation

    Avoiding Loss of Catalytic Activity of Pd Nanoparticles Partially Embedded in Nanoditches in SiC Nanowires

    Get PDF
    Nanoditches from selective etching of periodically twinned SiC nanowires were employed to hinder the migration and coalescence of Pd nanoparticles supported on the nanowires, and thus to improve their catalytic stability for total combustion of methane. The results show that the etched Pd/SiC catalyst can keep the methane conversion of almost 100% while the unetched one has an obvious decline in the catalytic activity from 100 to 82% after ten repeated reaction cycles. The excellent catalytic stability originates from the limitation of the nanoditches to the migration and growth of Pd nanoparticles

    Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-depleted Murine Embryonic Stem Cells

    Get PDF
    Embryonic stem cells (ESC) have the potential to self-renew indefinitely and to differentiate into any of the three germ layers. The molecular mechanisms for self-renewal, maintenance of pluripotency and lineage specification are poorly understood, but recent results point to a key role for epigenetic mechanisms. In this study, we focus on quantifying the impact of histone 3 acetylation (H3K9,14ac) on gene expression in murine embryonic stem cells. We analyze genome-wide histone acetylation patterns and gene expression profiles measured over the first five days of cell differentiation triggered by silencing Nanog, a key transcription factor in ESC regulation. We explore the temporal and spatial dynamics of histone acetylation data and its correlation with gene expression using supervised and unsupervised statistical models. On a genome-wide scale, changes in acetylation are significantly correlated to changes in mRNA expression and, surprisingly, this coherence increases over time. We quantify the predictive power of histone acetylation for gene expression changes in a balanced cross-validation procedure. In an in-depth study we focus on genes central to the regulatory network of Mouse ESC, including those identified in a recent genome-wide RNAi screen and in the PluriNet, a computationally derived stem cell signature. We find that compared to the rest of the genome, ESC-specific genes show significantly more acetylation signal and a much stronger decrease in acetylation over time, which is often not reflected in an concordant expression change. These results shed light on the complexity of the relationship between histone acetylation and gene expression and are a step forward to dissect the multilayer regulatory mechanisms that determine stem cell fate.Comment: accepted at PLoS Computational Biolog

    Pyrosequencing for Mini-Barcoding of Fresh and Old Museum Specimens

    Get PDF
    DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53–97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments

    European youth care sites serve different populations of adolescents with cannabis use disorder. Baseline and referral data from the INCANT trial

    Get PDF
    Background: MDFT (Multidimensional Family Therapy) is a family based outpatient treatment programme for adolescent problem behaviour. MDFT has been found effective in the USA in adolescent samples differing in severity and treatment delivery settings. On request of five governments (Belgium, France, Germany, the Netherlands, and Switzerland), MDFT has now been tested in the joint INCANT trial (International Cannabis Need of Treatment) for applicability in Western Europe. In each of the five countries, study participants were recruited from the local population of youth seeking or guided to treatment for, among other things, cannabis use disorder. There is little information in the literature if these populations are comparable between sites/countries or not. Therefore, we examined if the study samples enrolled in the five countries differed in baseline characteristics regarding demographics, clinical profile, and treatment delivery setting.Methods: INCANT was a multicentre phase III(b) randomized controlled trial with an open-label, parallel group design. It compared MDFT with treatment as usual (TAU) at and across sites in Berlin, Brussels, Geneva, The Hague and Paris.Participants of INCANT were adolescents of either sex, from 13 through 18 years of age, with a cannabis use disorder (dependence or abuse), and at least one parent willing to take part in the treatment. In total, 450 cases/families were randomized (concealed) into INCANT.Results: We collected data about adolescent and family demographics (age, gender, family composition, school, work, friends, and leisure time). In addition, we gathered data about problem behaviour (substance use, alcohol and cannabis use disorders, delinquency, psychiatric co-morbidity).There were no major differences on any of these measures between the treatment conditions (MDFT and TAU) for any of the sites. However, there were cross-site differences on many variables. Most of these could be explained by variations in treatment culture, as reflected by referral policy, i.e., participants' referral source. We distinguished 'self-determined' referral (common in Brussels and Paris) and referral with some authority-related 'external' coercion (common in Geneva and The Hague). The two referral types were more equally divided in Berlin. Many cross-site baseline differences disappeared when we took referral source into account, but not all.Conclusions: A multisite trial has the advantage of being efficient, but it also carries risks, the most important one being lack of equivalence between local study populations. Our site populations differed in many respects. This is not a problem for analyses and interpretations if the differences somehow can be accounted for. To a major extent, this appeared possible in INCANT. The most important factor underlying the cross-site variations in baseline characteristics was referral source. Correcting for referral source made most differences disappear. Therefore, we will use referral source as a covariate accounting for site differences in future INCANT outcome analyses

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Gelotophobia and the challenges of implementing laughter into virtual agents interactions

    Get PDF
    This study investigated which features of AVATAR laughter are perceived threatening for individuals with a fear of being laughed at (gelotophobia), and individuals with no gelotophobia. Laughter samples were systematically varied (e.g., intensity, laughter pitch, and energy for the voice, intensity of facial actions of the face) in three modalities: animated facial expressions, synthesized auditory laughter vocalizations, and motion capture generated puppets displaying laughter body movements. In the online study 123 adults completed, the GELOPH (Ruch and Proyer, 2008a,b) and rated randomly presented videos of the three modalities for how malicious, how friendly, how real the laughter was (0 not at all to 8 extremely). Additionally, an open question asked which markers led to the perception of friendliness/maliciousness. The current study identified features in all modalities of laughter stimuli that were perceived as malicious in general, and some that were gelotophobia specific. For facial expressions of AVATARS, medium intensity laughs triggered highest maliciousness in the gelotophobes. In the auditory stimuli, the fundamental frequency modulations and the variation in intensity were indicative of maliciousness. In the body, backwards and forward movements and rocking vs. jerking movements distinguished the most malicious from the least malicious laugh. From the open answers, the shape and appearance of the lips curling induced feelings that the expression was malicious for non-gelotophobes and that the movement round the eyes, elicited the face to appear as friendly. This was opposite for gelotophobes. Gelotophobia savvy AVATARS should be of high intensity, containing lip and eye movements and be fast, non-repetitive voiced vocalization, variable and of short duration. It should not contain any features that indicate a down-regulation in the voice or body, or indicate voluntary/cognitive modulation.the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 270780 (ILHAIRE project)

    Quantitative Proteomic Analysis of Human Embryonic Stem Cell Differentiation by 8-Plex iTRAQ Labelling

    Get PDF
    Analysis of gene expression to define molecular mechanisms and pathways involved in human embryonic stem cells (hESCs) proliferation and differentiations has allowed for further deciphering of the self-renewal and pluripotency characteristics of hESC. Proteins associated with hESCs were discovered through isobaric tags for relative and absolute quantification (iTRAQ). Undifferentiated hESCs and hESCs in different stages of spontaneous differentiation by embryoid body (EB) formation were analyzed. Using the iTRAQ approach, we identified 156 differentially expressed proteins involved in cell proliferation, apoptosis, transcription, translation, mRNA processing, and protein synthesis. Proteins involved in nucleic acid binding, protein synthesis, and integrin signaling were downregulated during differentiation, whereas cytoskeleton proteins were upregulated. The present findings added insight to our understanding of the mechanisms involved in hESC proliferation and differentiation
    corecore