2,845 research outputs found

    PRINCIPLES OF ADEQUACY CRITERIA FORMULATION IN HUMAN MOTION ANALYSIS

    Get PDF
    Introduction. Number of parameters of an anthropomorphic model (AM), which simulates real human motion, can achieve the value of one hundred and even more than that. This makes obvious the necessity of adequacy criteria formulation. Optimal value of such criteria should indicate structural and parametric adjustment of AM to certain real human motion. Modelling of human motion with employment of mechanical-mathematical apparatus of system of body motion equations implies a significant number of problem parameters [1] required for description of the structure, and components and kinematics of motion as well. Choice of these parameters values seriously depends on what experimental data is available. METHODS AND RESULTS: The base of computer model consists in a system of differential-algebraic equations of motion of a ramified kinematics chain with nonstationary constraints. In particular, as constraint equations there can serve generalized coordinates behaviour functions, obtained through video-registration data processing. Such approach allows to determine main dynamic values, including generalized forces. However, measurement errors lead to significant errors in assessed values of inter-element forces and moments and especially values of external with respect to AM ground reaction and total moment of external forces in support phase of motion. Variation of AM elements parameters, positions of joints, parameters of trajectories smoothing allows to obtain an averaged assessment of external forces values. In the report there is suggested a new approach to structural an parametrical adjustment of AM. Presence of non-stationary constraint equations allows to use some of experimental data for such constraints. For example, ground reaction force and/or external moment can be available or equal to zero during the flight phase. One of investigation result is that there have been analyzed grand circles on the horizontal bar with a following jump off the bar and four backward somersaults performed in a grouped position. The number of AM elements is widely varied. There has been investigated influence of possible errors in determination of visco-elastic properties of the bar on the analysis results for different processing procedures. CONCLUSION: The suggested approach to iterational parametric adjustment of AM on the basis of employing of constraint equations allows for complete matching of model motion characteristics with most important experimental data. Less important data are estimated in average, which corresponds to traditional structural- parametric adjustment of AM. REFERENCES: 1. Zinkovsky A.V., Sholuha V.A., Ivanov A.A. Mathematical Modelling and Computer Simulation of Biomechanical Systems, WSP, Singapore, 1997. 216p

    Identification and tunable optical coherent control of transition-metal spins in silicon carbide

    Get PDF
    Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration in communication technology is hindered by the fact that their optical transitions lie outside telecom wavelength bands. Several transition-metal impurities in silicon carbide do emit at and near telecom wavelengths, but knowledge about their spin and optical properties is incomplete. We present all-optical identification and coherent control of molybdenum-impurity spins in silicon carbide with transitions at near-infrared wavelengths. Our results identify spin S=1/2S=1/2 for both the electronic ground and excited state, with highly anisotropic spin properties that we apply for implementing optical control of ground-state spin coherence. Our results show optical lifetimes of ∌\sim60 ns and inhomogeneous spin dephasing times of ∌\sim0.3 ÎŒ\mus, establishing relevance for quantum spin-photon interfacing.Comment: Updated version with minor correction, full Supplementary Information include

    Heavily n-doped Ge : low-temperature magnetoresistance properties on the metallic side of the metal–nonmetal transition

    Get PDF
    We report here an experimental and theoretical study on the magnetoresistance properties of heavily phosphorous doped germanium on the metallic side of the metal–nonmetal transition. An anomalous regime, formed by negative values of the magnetoresistance, was observed by performing low-temperature measurements and explained within the generalized Drude model, due to the many-body effects. It reveals a key mechanism behind the magnetoresistance properties at low temperatures and, therefore, constitutes a path to its manipulation in such materials of great interest in fundamental physics and technological applications

    Design of a pulse power supply unit for micro-ECM

    Get PDF
    Electrochemical micro-machining (ÎŒECM) requires a particular pulse power supply unit (PSU) to be developed in order to achieve desired machining performance. This paper summarises the development of a pulse PSU meeting the requirements of ÎŒECM. The pulse power supply provides tens of nanosecond pulse duration, positive and negative bias voltages and a polarity switching functionality. It fulfils the needs for tool preparation with reversed pulsed ECM on the machine. Moreover, the PSU is equipped with an ultrafast overcurrent protection which prevents the tool electrode from being damaged in case of short circuits. The developed pulse PSU was used to fabricate micro-tools out of 170 ÎŒm WC-Co alloy shafts via micro-electrochemical turning and drill deep holes via ÎŒECM in a disk made of 18NiCr6. The electrolyte used for both processes was a mixture of sulphuric acid and NaNO3 aqueous solutions.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMP-ICT-FoF-285614

    Cellular and Molecular Bases of the Initiation of Fever

    Get PDF
    All phases of lipopolysaccharide (LPS)-induced fever are mediated by prostaglandin (PG) E(2). It is known that the second febrile phase (which starts at ~1.5 h post-LPS) and subsequent phases are mediated by PGE(2) that originated in endotheliocytes and perivascular cells of the brain. However, the location and phenotypes of the cells that produce PGE(2) triggering the first febrile phase (which starts at ~0.5 h) remain unknown. By studying PGE(2) synthesis at the enzymatic level, we found that it was activated in the lung and liver, but not in the brain, at the onset of the first phase of LPS fever in rats. This activation involved phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) and transcriptional up-regulation of cyclooxygenase (COX)-2. The number of cells displaying COX-2 immunoreactivity surged in the lung and liver (but not in the brain) at the onset of fever, and the majority of these cells were identified as macrophages. When PGE(2) synthesis in the periphery was activated, the concentration of PGE(2) increased both in the venous blood (which collects PGE(2) from tissues) and arterial blood (which delivers PGE(2) to the brain). Most importantly, neutralization of circulating PGE(2) with an anti-PGE(2) antibody both delayed and attenuated LPS fever. It is concluded that fever is initiated by circulating PGE(2) synthesized by macrophages of the LPS-processing organs (lung and liver) via phosphorylation of cPLA(2) and transcriptional up-regulation of COX-2. Whether PGE(2) produced at the level of the blood–brain barrier also contributes to the development of the first phase remains to be clarified

    Design of an electrochemical micromachining machine

    Get PDF
    Electrochemical micromachining (ÎŒECM) is a non-conventional machining process based on the phenomenon of electrolysis. ÎŒECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation ÎŒECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)

    Lattice dynamics and spin excitations in the metal-organic framework [CH3_3NH3_3][Co(HCOO)3_3]

    Full text link
    In metal-organic-framework (MOF) perovskites, both magnetic and ferroelectric orderings can be readily realized by compounding spin and charge degrees of freedom. The hydrogen bonds that bridge the magnetic framework and organic molecules have long been thought of as a key in generating multiferroic properties. However, the underlying physical mechanisms remain unclear. Here, we combine neutron diffraction, quasielastic and inelastic neutron scattering, and THz spectroscopy techniques to thoroughly investigate the dynamical properties of the multiferroic MOF candidate [CH3_3NH3_3][Co(HCOO)3_3] through its multiple phase transitions. The wide range of energy resolutions reachable by these techniques enables us to scrutinize the coupling between the molecules and the framework throughout the phase transitions and interrogate a possible magnetoelectric coupling. Our results also reveal a structural change around 220 K which may be associated with the activation of a nodding donkey mode of the methylammonium molecule due to the ordering of the CH3_3 groups. Upon the occurrence of the modulated phase transition around 130 K, the methylammonium molecules undergo a freezing of its reorientational motions which is concomitant with a change of the lattice parameters and anomalies of collective lattice vibrations. No significant change has been however observed in the lattice dynamics around the magnetic ordering, which therefore indicates the absence of a substantial magneto-electric coupling in zero-field

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range ∣η∣<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a âˆŁÎ”Î·âˆŁ|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}≃v2{6}≠0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a âˆŁÎ”Î·âˆŁ>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    More stories on Th17 cells

    Get PDF
    For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. the Th1/Th2 paradigm implied the existence of two different, mutually regulated, CD4(+) T helper subsets: Th1 cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particularly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4(+) T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Th1 or Th2 cells. the Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Th1, Th2 and Th17 effector cells but there is also a dichotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-beta or TGF-beta plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.Crohn's and Colitis Foundation of AmericaNIHLa Jolla Inst Allergy & Immunol, La Jolla, CA 92037 USAUniversidade Federal de SĂŁo Paulo, Dept Microbiol Immunol & Parasitol, SĂŁo Paulo, BrazilUniversidade Federal de SĂŁo Paulo, Dept Microbiol Immunol & Parasitol, SĂŁo Paulo, BrazilNIH: RO1 AI050265-06Web of Scienc
    • 

    corecore