50 research outputs found

    Magnetostriction in the magneto-sensitive elastomers with inhomogeneously magnetized particles: pairwise interaction approximation

    Full text link
    We analyze the magnetostriction effect occurring in the magneto-sensitive elastomers (MSEs) containing inhomogeneously magnetized particles. As it was shown before, the expression for the interaction potential between two magnetic spheres, that accounts for their mutual inhomogeneous magnetization, can be obtained from the Laplace equation. We use this potential in the approximation formula form to construct magnetic energy of the sample in terms of the pairwise interactions of the particles. We show that this form of magnetic energy leads to the same demagnetizing factor as predicted by the continuum mechanics, confirming that only dipole-dipole magnetic interactions are important on a large scale. As the next step, we examine the role played by the particles arrangement on the magnetostriction effect. We consider different spatial distributions of the magnetic particles: a uniform one, as well as several lattice-type distributions (SC, BCC, HCP and FCC arrangements). We show that the particles arrangement affects significantly the magnetostriction effect if the separation between them became comparable with the particles' dimensions. We also show that, typically, this contribution to the magnetostriction effect is of the opposite sign to the one related with the initial elastomer shape. Finally, we calculate the magnetostriction effect using the same interaction potential but expressed in a form of a series expansion, qualitatively confirming the above findings

    Mechanical properties of magneto-sensitive elastomers: unification of the continuummechanics and microscopic theoretical approaches

    Get PDF
    A new theoretical formalism is developed for the study of the mechanical behaviour of magneto-sensitive elastomers (MSEs) under a uniform external magnetic field. This formalism allows us to combine macroscopic continuum-mechanics and microscopic approaches for complex analysis of MSEs with different shapes and with different particle distributions. It is shown that starting from a model based on an explicit discrete particle distribution one can separate the magnetic field inside the MSE into two contributions: one which depends on the shape of the sample with finite size and the other, which depends on the local spatial particle distribution. The magneto-induced deformation and the change of elastic modulus are found to be either positive or negative, their dependences on the magnetic field being determined by a non-trivial interplay between these two contributions. Mechanical properties are studied for two opposite types of coupling between the particle distribution and the magneto-induced deformation: absence of elastic coupling and presence of strong affine coupling. Predictions of a new formalism are in a qualitative agreement with existing experimental data

    Local and cluster critical dynamics of the 3d random-site Ising model

    Full text link
    We present the results of Monte Carlo simulations for the critical dynamics of the three-dimensional site-diluted quenched Ising model. Three different dynamics are considered, these correspond to the local update Metropolis scheme as well as to the Swendsen-Wang and Wolff cluster algorithms. The lattice sizes of L=10-96 are analysed by a finite-size-scaling technique. The site dilution concentration p=0.85 was chosen to minimize the correction-to-scaling effects. We calculate numerical values of the dynamical critical exponents for the integrated and exponential autocorrelation times for energy and magnetization. As expected, cluster algorithms are characterized by lower values of dynamical critical exponent than the local one: also in the case of dilution critical slowing down is more pronounced for the Metropolis algorithm. However, the striking feature of our estimates is that they suggest that dilution leads to decrease of the dynamical critical exponent for the cluster algorithms. This phenomenon is quite opposite to the local dynamics, where dilution enhances critical slowing down.Comment: 24 pages, 16 figures, style file include

    Fixed points in frustrated magnets revisited

    Full text link
    We analyze the validity of perturbative renormalization group estimates obtained within the fixed dimension approach of frustrated magnets. We reconsider the resummed five-loop beta-functions obtained within the minimal subtraction scheme without epsilon-expansion for both frustrated magnets and the well-controlled ferromagnetic systems with a cubic anisotropy. Analyzing the convergence properties of the critical exponents in these two cases we find that the fixed point supposed to control the second order phase transition of frustrated magnets is very likely an unphysical one. This is supported by its non-Gaussian character at the upper critical dimension d=4. Our work confirms the weak first order nature of the phase transition occuring at three dimensions and provides elements towards a unified picture of all existing theoretical approaches to frustrated magnets.Comment: 18 pages, 8 figures. This article is an extended version of arXiv:cond-mat/060928
    corecore