We present the results of Monte Carlo simulations for the critical dynamics
of the three-dimensional site-diluted quenched Ising model. Three different
dynamics are considered, these correspond to the local update Metropolis scheme
as well as to the Swendsen-Wang and Wolff cluster algorithms. The lattice sizes
of L=10-96 are analysed by a finite-size-scaling technique. The site dilution
concentration p=0.85 was chosen to minimize the correction-to-scaling effects.
We calculate numerical values of the dynamical critical exponents for the
integrated and exponential autocorrelation times for energy and magnetization.
As expected, cluster algorithms are characterized by lower values of dynamical
critical exponent than the local one: also in the case of dilution critical
slowing down is more pronounced for the Metropolis algorithm. However, the
striking feature of our estimates is that they suggest that dilution leads to
decrease of the dynamical critical exponent for the cluster algorithms. This
phenomenon is quite opposite to the local dynamics, where dilution enhances
critical slowing down.Comment: 24 pages, 16 figures, style file include