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Mechanical properties of magneto-sensitive
elastomers: unification of the continuum-
mechanics andmicroscopic theoretical approaches

Dmytro Ivaneyko,ab Vladimir Toshchevikov,ac Marina Saphiannikova*a

and Gert Heinrichab

A new theoretical formalism is developed for the study of the mechanical behaviour of magneto-sensitive

elastomers (MSEs) under a uniform external magnetic field. This formalism allows us to combine

macroscopic continuum-mechanics and microscopic approaches for complex analysis of MSEs with

different shapes and with different particle distributions. It is shown that starting from a model based on

an explicit discrete particle distribution one can separate the magnetic field inside the MSE into two

contributions: one which depends on the shape of the sample with finite size and the other, which

depends on the local spatial particle distribution. The magneto-induced deformation and the change of

elastic modulus are found to be either positive or negative, their dependences on the magnetic field

being determined by a non-trivial interplay between these two contributions. Mechanical properties are

studied for two opposite types of coupling between the particle distribution and the magneto-induced

deformation: absence of elastic coupling and presence of strong affine coupling. Predictions of a new

formalism are in a qualitative agreement with existing experimental data.

1 Introduction

Composites that consist of a polymer matrix and magnetic

inclusions belong to a class of smart materials, whose mechan-

ical behavior can be controlled by application of an external

magnetic eld. Magneto-sensitive elastomers (MSEs) are one of

the very promising classes among these smart materials. Nowa-

days, MSEs nd a wide range of industrial applications as

controllable membranes, adaptive tuned vibration absorbers,

stiffness tunable mounts and automobile suspensions.1

Different types of magnetic particles can be used as llers in

MSEs. Mostly carbonyl iron is used; it is dictated by commercial

interests.2 Carbonyl iron particles produced industrially can

have almost mono-dispersed size around 1 mm, shape close to

spherical and show so magnetic behaviour. The spatial

distribution of particles inside an elastomer can be either

isotropic or anisotropic (chain-like, plane-like), depending on

the method of preparation.3 The particle distribution signi-

cantly affects the mechanical properties of MSE under a

uniform external magnetic eld. Especially the spatial

distribution of magnetic particles inuences the sign of

magneto-induced deformation (contraction or expansion,

usually considered as magnetostriction) and the mechanical

moduli (soening or stiffening). Many experiments show that

MSEs with an isotropic particle distribution demonstrate a

uniaxial expansion along the magnetic eld,4,5 while MSEs with

a chain-like particle distribution demonstrate a uniaxial

contraction along the magnetic eld.4,6,7 Besides, most of these

studies indicate increase of the elastic modulus8–11 and shear

modulus12–23 with increasing magnetic eld for both isotropic

and anisotropic MSEs.

At the same time a lot of theoretical studies have been

proposed to investigate the mechanical behaviour of MSEs under

a uniform external magnetic eld.5,6,24–29 These studies are based

on two approaches: macroscopic continuum-mechanics

approach5,24–26 and microscopic approach.6,27–30 The macroscopic

continuum-mechanics approach considers the deformation-

dependent demagnetizing shape factor and does not take into

account a local discrete distribution of particles. It always

predicts the elongation of MSEs along the external magnetic eld

and increase of the elastic modulus. However, the continuum-

mechanics approach is not able to describe the effect of particle

distribution on the magneto-elastic properties of MSEs.

The microscopic approach considers explicitly the discrete

particle distribution inside a polymer matrix. Dipole–dipole

interaction between the magnetic particles leads to their pair-

wise attraction and repulsion depending onmutual positions of

the particles. Since the dipole–dipole interaction is a long-range
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interaction, the spatial distribution of particles inside the

matrix strongly affects the sign of the magneto-induced defor-

mation and behaviour of tensile and shear moduli.31,32 The

microscopic approach can predict a different sign of magneto-

induced deformation (expansion or contraction), depending on

the form of spatial particle distribution. However, previous

studies by the authors31,32 as well as quasi-static one-chain

models,6,27,28 the multi-chain model29 and extension of our

approach31 to the wavy particle-chain structure30 considered

innite MSE samples and thus neglected the effects of shape

change for nite samples. Therefore, a new theoretical

approach is needed, which would allow us to describe in

agreement with experiments the mechanical properties of MSEs

with different shapes and with different particle distributions.

Here we would like to mention recently published studies on

the magneto-induced deformation of ferrogels,33,34 i.e.magnetic

systems with randomly oriented permanent magnetic

moments. In these studies the continuum-mechanics approach

was modied phenomenologically to take into account the local

particle distribution. The latter was introduced through an

equation of the magnetic susceptibility c of MSEs, assuming

that the rearrangement of particle positions provides the

change of c. The method proposed allows consideration of

stochastic particle distributions33 and the chain-like distribu-

tions34 within a ferrogel. It is however restricted to qualitative

predictions of a sign of the magneto-induced deformation and

does not predict magnitudes of the deformation and the

mechanical moduli. Besides, MSEs and ferrogels are totally

different magnetic systems in terms of the mechanism of how

the particles move and how the magnetic moments orient.

Thus, this recent approach33,34 cannot be applied to MSEs.

The aim of the present work is to develop a new theoretical

formalism for the mechanical properties of MSEs with different

shapes and with different particle distributions. We show that

starting from a model based on an explicit discrete particle

distribution one can separate the magnetic eld inside the MSE

into two contributions: one which depends on the shape of the

sample with nite size and the other, which depends on the

local particle distribution. Further, we show that the behaviour

of magneto-induced deformation and elastic modulus as func-

tions of magnetic eld is determined by a non-trivial interplay

between these two contributions. For simplicity, we consider in

this study a linear regime of magnetisation of the magnetic

particles and linear elastic response of the polymer matrix.

2 Magnetic field inside an MSE
2.1 Model and general equations

In this section we focus on calculation of the magnetic eld

inside an MSE. We introduce a microscopic model of the MSE

that allows us to take explicitly into account both the shape of a

nite sample and the local spatial distribution of particles. We

assume that the MSE sample has the shape of an ellipsoid of

revolution (see Fig. 1) with a pair of equal semi-axes (B ¼ C) and

a distinct third semi-axis (A) which is an axis of symmetry. The

sample aspect ratio g ¼ A/B will be used in the next sections to

characterize the initial shape of the sample as well as the

sample deformation. In the present section we use g as a

parameter, which denes the shape of a sample: if g ¼ 1 then

the sample is a sphere, if g > 1 then the sample is a prolate

ellipsoid and if g < 1 then the sample is an oblate ellipsoid.

Further, we assume that the MSE consists of a non-magnetic

elastomeric matrix with embedded magnetic particles. All

magnetic particles are prepared from the same material with

the magnetic susceptibility c (c [ 1). For simplicity it is

assumed that the particles have the same spherical form of

radius R. In the present section we derive general equations for

the magnetic eld inside an MSE with an arbitrary spatial

distribution of particles. In the next sections these equations

will be applied to concrete (regular) particle distributions.

Application of a homogeneous magnetic eld H0 to the MSE

causes magnetization of embedded particles. In our work we

consider such a conguration where the external magnetic eld

H0 is directed along the axis of symmetry (x-axis in Fig. 1). For

further calculations we use the result of the continuum-

mechanics theory35 that the homogeneous external magnetic

eld induces a constant magnetization, which is independent

of the position inside the ellipsoidal sample. In accordance with

this result, we assume that all particles have the same dipole

momentm, which is directed along the x-axis:m¼ {m, 0, 0}. The

last assumption implies the homogeneity of a particle distri-

bution, i.e. the absence of dense clusters of particles separated

by particle-poor regions, as well as a statistically relevant

number of particles in a macroscopic sample. The latter

condition puts an additional restriction on the volume fraction

of particles f, which will be discussed later in Section 3.

The rst step is to calculate the induced magnetic eld Hd,

which is produced by all surrounding magnetic particles in the

point rj, where the j-th particle is situated. The value of Hd

produced by dipoles m is given by31,32

Hd

�

rj

�

¼ 1

4p
m

X

isj

3
�

rji

�

x
2 � rji

2

�

�rji

�

�

5
; (1)

Fig. 1 Schematic drawing of the microscopic model of MSE under a

uniform external magnetic field H0.
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where rji is the radius-vector which connects the j-th and i-th

particles. The sum in the right-hand side of eqn (1) is performed

over all particles excluding the j-th particle i s j. One can see

from eqn (1) that the eld Hd is determined by the distribution

of particles inside the MSE. It is convenient to rewrite eqn (1) in

the following form:

Hd(rj) ¼ mcf({rji}), (2)

where c is the number of particles in the unit volume and the

dimensionless function f is determined only by the spatial

distribution of particles {rij}:

f
��

rji

��

¼ 1

4pc

X

isj

3
�

rji

�

x
2 � rji

2

�

�rji

�

�

5
: (3)

Note that the calculation of Hd represents a very complicated

problem which includes a numerical summation over huge

number of particles in a macroscopic sample.

Now we will introduce a theoretical formalism which allows

us to simplify the numerical calculation of the factor f. For that

we split the volume of the sample into two parts: the micro-

sphere of radius r0 with a center on the j-th particle (red point in

Fig. 1) and the remaining part of the macroscopic sample. The

value r0 is chosen to be much larger than an average distance

between neighbouring particles R0: r0[ R0 x c�1/3. Thus, the

factor f can be split into two parts:

f ¼ fmicro + fmacro, (4)

where fmicro is a sum over particles inside the microsphere:

fmicro ¼
1

4pc

X

jrjij# r0

3
�

rji

�

x
2 � rji

2

�

�rji

�

�

5
(5)

and fmacro is a sum inside the remaining part of the sample. For

r0 [ R0 x c�1/3 the sum fmacro is well approximated by an

integral

fmacro ¼
1

4p

ð

DV

3rx
2 � r

2

jrj5
d3
r; (6)

where DV is the volume between the microsphere of radius r0
and the boundary of the ellipsoid. It can be shown that the

location of the microsphere does not affect the value of fmacro.

Performing transformation of the cartesian coordinates {x, y, z}

to the spherical coordinates {r, q, f}:

x ¼ r cos q, y ¼ r sin q cos f, z ¼ r sin q sin f, (7)

one can calculate the integral in eqn (6) analytically. We rewrite

it in the form

fmacro ¼
1

4p

ð2p

0

df

ðp

0

sin q dq

ðrq

r0

r2dr
3cos2 q� 1

r3
; (8)

where rq denes the boundary of the ellipsoid:

rq ¼
�

cos2 q

A2
þ sin

2
q

B2

��1=2

: (9)

Aer integration over f and r one gets

fmacro ¼
1

2

ðp

0

sin q
�

3cos2 q� 1
�

ðln rq � ln r0Þdq: (10)

The integration of the term, which contains ln r0, results in

zero, since

ðp

0
sin qð3cos2 q� 1Þdq ¼ 0. Thus, the factor fmacro is

independent of the microsphere radius r0 and can be rewritten

in the form

fmacro ¼ � 1

2

ð1

0

�

3x2 � 1
�

ln
	

x2 þ g2
�

1� x2
�


dx; (11)

where the substitution x ¼ cos q was used. Note that g ¼ A/B is

the sample aspect ratio. The integration results in the following

analytical equations:

fmacro ¼
1

3
�NðgÞ; (12)

where

NðgÞ ¼

g�2

ð1� g�2Þ3=2

"

arth

 

ffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p

g

!

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � 1
p

g

#

;g. 1

1=3; g ¼ 1

g�2

ðg�2 � 1Þ3=2

"

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

g
� arctg

 

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� g2
p

g

!#

;g\1

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(13)

Note that N(g) is exactly the demagnetizing factor N, which

appears in the continuum-mechanics theory.36 One can see that

fmacro ¼ 0 for g ¼ 1.

Hence, the induced magnetic eld Hd is determined as a

contribution of two factors fmicro and fmacro. The factor fmacro is

dened by the demagnetizing factor N(g) which depends on the

shape of the sample but is independent of the particle distri-

bution. The factor fmicro is determined by the particle distribu-

tion but is independent of the shape of the sample, since the

sum in eqn (5) is performed over particles inside a xed sphere.

Note that the sum in eqn (5) converges at r0[ R0 x c�1/3, since

any additional sum from the sphere of radius r0 till a larger

sphere with the radius ~r can be approximated by an integral of

the form similar to eqn (10). This integral is equal to zero for

rq ¼ ~r ¼ const, since

ðp

0
sin qð3cos2 q� 1Þdq ¼ 0. We have found

that the sum in eqn (5) converges at r0 >10R0.
31

Thus, the formalism developed above allows us to combine

the continuum-mechanics and the microscopic approaches. It

takes explicitly into account the effect of the sample shape and

the discrete particle distribution. Below, we demonstrate that

this formalism provides exact solutions for Hd using different

lattice models.

2.2 Isotropic particle distribution

As in our previous paper32 we use three different lattice models

to mimic the isotropic distribution of magnetic particles:

simple cubic (SC), body-centered cubic (BCC) and hexagonal

close-packed (HCP) lattices (see Fig. 2).

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 2213–2225 | 2215
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Due to the axial symmetry it is sufficient to consider the

distribution of the magnetic eld on the xy-plane at z ¼ 0. Fig. 3

shows the normalized dipole magnetic eld Hd/(mc) as a

function of a dimensionless x/|xmax| coordinate for different

values of y at z ¼ 0. Here x ˛ [�xmax, xmax], where

xmax ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2=B2
p

. To obtain good statistics we choose the

size of the sample such that AB2 ¼ (40a)3 for all three lattices,

where a is the edge of the lattice. Thus, the ellipsoid contains

approximately 2.6 � 105, 5.2 � 105 and 3.7 � 105 particles for

SC, BCC and HCP lattices, respectively.

The points in Fig. 3 show the exact values of the induced

magnetic eld as a function of coordinates rj, calculated using

explicit summation over all particles according to eqn (2) and (3).

The sum in eqn (3) was performed over sites of the regular

lattices. The solid lines in Fig. 3 show the values of Hd/(mc)

averaged over all points rj. One can see that the inducedmagnetic

eld Hd is constant and does not depend on the spatial position

inside the sample, except some points on the vicinity of the

surface. The eld on the surface is known to change step-wise.36,37

Thus, our calculations conrm the result of the continuum-

mechanics approach that the magnetic eld inside an ellipsoid is

constant and has a step-wise peculiarity on the surface.36,37 It

increases with the increase of the sample aspect ratio g.

Fig. 4 shows the value of hHdi/(mc) averaged over all particles

as a function of g using three introduced lattice models for the

isotropic particle distribution. The points illustrate the result of

exact summation (eqn (2) and (3)) over all particles inside the

ellipsoid. The line shows the value hHdiwhich is provided by the

theoretical formalism given by eqn (2), (4), (5) and (12).

One can see a good agreement between the values f obtained

by using explicit summation (points) and using the theoretical

formalism (lines). All points in Fig. 4 lie on the same line which

is described by factor f ¼ fmacro(g), since fmicro({rij}) ¼ 0 for all

Fig. 2 Three regular lattices to mimic the isotropic spatial distribution
of magnetic particles; a is the edge of each lattice.

Fig. 3 The normalized dipole magnetic field Hd/(mc) as a function of

coordinates x and y, xmax ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2=B2
p

. Results are presented for five

different values of the aspect ratio g.

Fig. 4 The normalized dipole magnetic field hHdi/(mc), averaged over

all particles as a function of g, calculated for the SC, BCC and HCP
lattice particle distributions using the exact summation (points) and the

theoretical formalism (line). To avoid the crowding of points on the

graph, we calculated hHdi/(mc) for different lattice models at slightly

different values of g.
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lattice models due to symmetrical distributions of particles

inside the microsphere.

Thus, starting from a model with the discrete particle

distribution, we show that the internal magnetic eld does not

depend on the particle positions for the isotropic particle

distribution. The averaged magnetic eld is shown to be well

described by the theoretical formalism developed in Section 2.1.

2.3 Anisoptropic particle distribution

Now we consider the anisotropic particle distribution inside

the MSEs with different aspect ratios g. To consider aniso-

tropic particle distributions (chain-like and plane-like distri-

butions) we use the tetragonal lattice model which represents

a deformed simple cubic lattice (see Fig. 5).31 The values L(0)x ,

L(0)y , L(0)z (L(0)y ¼ L(0)z ) are the lattice edges. We introduce the

anisotropy parameter a ¼ L(0)x /L(0)y , which denes an anisotropy

of spatial distribution of particles along x- and y-axis: if a ¼ 1

one has the isotropic particle distribution, if a < 1 or a > 1 one

has the chain-like or plane-like particle distributions,

respectively.

Fig. 6 shows the normalized dipole magnetic eld Hd/(mc)

as a function of the dimensionless x/|xmax| coordinate inside

the prolate MSE sample with g ¼ 2.0. The values of Hd/(mc)

were calculated at z ¼ 0 and at different x, y-coordinates for

tetragonal lattices with varying values of the anisotropy

parameter a. One can see that at each value of a the

magnetic eld is independent of the spatial position, except

the points in the vicinity of the surface where the eld

changes step-wise.

In Fig. 7 the averaged values of hHdi/(mc) as functions of the

aspect ratio g, calculated for the particle distribution on a

tetragonal lattice with different anisotropy parameter a, are

presented. The symbols mark the values of hHdi/(mc) averaged

explicitly over all particles in the ellipsoid, calculated using eqn

(2) and (3). The solid lines mark results of the theoretical

formalism given by eqn (2), (4), (5) and (12). It includes the sum

fmicro over particles in the microsphere of radius r0[ R0 and

the analytical integral fmacro. Note that for an anisotropic

particle distribution fmicros 0 if as 1, fmicro being a function of

a. Thus, in contrast to the isotropic particle distribution, the

magnetic eld in a sample with the anisotropic particle distri-

bution depends on the degree of anisotropy of particle distri-

bution. One can see from Fig. 7 a good agreement between the

exact summation over all particles and the theoretical

formalism.

Thus, the formalism developed in Section 2.1 allows us to

describe in a simple way the magnetic eld inside an MSE at

the variable shape factor g and for different particle distri-

butions inside the MSE, the particle distribution being varied

in a whole sample. Moreover, one can see that the value of the

magnetic eld provided by the proposed theoretical

formalism is independent of the shape of the surface which

splits the factor f into two contributions fmicro and fmacro.

Indeed, the integral from an arbitrary splitting surface r1(q)

until the boundary of the sample is presented as a sum of the

integrals from r1(q) until r0 ( r0 > r1(q)) and from r0 until the

boundary of the sample. The latter integral equals fmacro

given by eqn (12) and (13); the former one is well approxi-

mated by the sum over the particles at r1(q) < |rij| < r0, since R0

� r1(q). The last sum at r1(q) < |rij| < r0 together with the sum

at |rij| < r1(q) equals fmicro given by eqn (5). Thus, the

magnetic eld provided by the proposed theoretical

method is independent of the shape of the splitting surface.

To check this conclusion, we used the ellipsoidal splitting

surfaces of different aspect ratios and obtained the same

values of the magnetic eld presented by the lines in Fig. 4

and 7.

The idea to split the magnetic eld into two contributions

fmicro and fmacro is very similar to the well-known concept of

the Lorenz sphere.38 However, in contrast to the Lorentz–

Lorenz approach, in which fmicro ¼ 0, the factor fmicro, as we

showed explicitly in Section 2, depends on the particle

distribution and can differ from zero. One can see from Fig. 4

and 7 that the proposed theoretical formalism provides a

strong enough approximation for the magnetic eld inside

an MSE with large number of included particles. Below

we use this approximation to calculate the magnetization of

an MSE.

Fig. 6 The normalized dipole magnetic field Hd/(mc) as a function of

the dimensionless x/|xmax| coordinate in the case of tetragonal lattice
distribution of magnetic particles inside the prolate MSE sample with g

¼ 2.0. Results are presented for five different values of the lattice

anisotropy a.

Fig. 5 The cell of the tetragonal lattice, characterized by the structural

parameter a ¼ L(0)x /L(0)y ; L(0)y ¼ L(0)z .

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 2213–2225 | 2217
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3 Magnetization of MSE

Bulk magnetisation is one of the characteristic quantities that is

usually measured in experiments. In the previous section we

assumed that each magnetic particle has the same magnetic

moment m inside an ellipsoidal MSE under a homogeneous

external magnetic eld H0. One can see now that this assump-

tion is a very good approximation for the magnetic moment

distribution inside the MSE. Indeed, each magnetic momentmj

is determined only by the total magnetic eld, H, which is

induced in the vicinity of a j-th magnetic particle by all external

sources:mj¼mj(H). Since the total magnetic eld,H¼H0 +Hd,

is constant inside a sample, the magnetic moments should be

also constant: mj ¼ m ¼ const. This consistency fails only in a

thin layer close to the surface of the macroscopic sample, where

Hd is not constant.

We estimated the thickness of this layer to be �10R0,
31

where R0 is the average distance between neighbouring

particles. Therefore, one can neglect the contribution from

this layer to the total magnetization and the magnetic energy,

if the characteristic size of a sample A is much higher than

10R0: A[ 10R0. The last condition puts a restriction on the

volume fraction of particles f as follows: f � (R/R0)
3
[ (10 R/

A)3. If we take a typical size of particles R � 1 mm as well as A �
1 cm then f[ 10�9, the condition which is always fullled.

Thus, in a very good approximation the magnetic moments

and the magnetic eld are supposed to be constant inside an

MSE.

It is known from classical studies that the magnetic dipolem

of a spherical particle, placed into the external magnetic eldH,

can be calculated for linear magnetics as37

m ¼ n
3c

ð3þ cÞH; (14)

where n is the volume of the particle. As we mentioned above, H

consists of two contributions:

H ¼ H0 + Hd, (15)

where the value Hd is also a function of m according to eqn (2).

In other words, eqn (2), (14) and (15) represent the condition of

self-consistency for the magnetic momentm. Thus, the valuem

is to be found from the following equation:

m ¼ n
3c

ð3þ cÞ ðH0 þmcf Þ: (16)

From the last equation we obtain an expression for the

magnetic dipole as

m ¼ nH0

c�1 þ 1

3
� ff

; (17)

where f ¼ nc is the volume fraction of the magnetic particles.

Now, the bulk magnetization MV reads

MV ¼ mc (18)

that nely gives

MV ¼ fH0

c�1 þ 1

3
� ff

: (19)

Here we note that the last equation follows from eqn (14)

which is valid only for linear magnetics. For nonlinear

magnetics the relationship between MV and f can be more

complicated as compared with eqn (19). Moreover, for high

values of f the approximation of point-like dipoles fails

and, thus, the nite size of magnetic particles can play a

signicant role. However, one can expect that the approach

presented above provides a good approximation in the region, f

# 0.2 where the Lorentz–Lorenz approach is valid,38 since it uses

also the point-like approximation for dipole–dipole interactions.

From eqn (19) one can obtain a very important result that the

magnetization MV is the monotonically increasing function of

f, g and c at xed particle distribution, since

vMV

vf
¼ H0

c�1 þ 1

3

c�1 þ 1

3
� ff

� �2
. 0; (20)

vMV

vg
¼ H0

f2

c�1 þ 1

3
� ff

� �2

vfmacro

vg
. 0; (21)

and

vMV

vc
¼ H0

f

c2 c�1 þ 1

3
� ff

� �2
. 0: (22)

Here we have used that vfmicro/vg ¼ 0. These tendencies are

illustrated in Fig. 8, where the ratio MV/H0 is presented as a

function of f for different values of g (Fig. 8a) and for different

values of a (Fig. 8b). Thus, starting from a general model with

the discrete particle distribution we obtained general results for

the dependence of MV on the parameters f, c, g and a.

Fig. 7 The normalized dipole magnetic field hHdi/(mc), averaged over

all particles as a function of g, calculated for the tetragonal lattice

particle distribution using the exact summation (points) and the

theoretical formalism (lines). Results are presented for five different
values of the lattice anisotropy a.
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In previous sections the parameters g and a were varied

independently. Certainly, there should exist some coupling of

these parameters. In the next section we introduce different

approaches for this coupling and analyse the free energy in

order to study the mechanical response of the MSEs.

4 Free energy and elastic response
4.1 General equations

Interaction between the induced magnetic moments leads to

pair-wise attraction and repulsion of the magnetic particles

depending on their mutual positions.31,32 This behaviour of the

particles leads to elastic response of the sample. Thus, an

ellipsoidal sample can change its shape under a magnetic eld.

Let the semi-axes of an ellipsoidal sample be changed from the

initial values A0, B0 ¼ C0 to the new values A, B ¼ C. The initial

aspect ratio g0 ¼ A0/B0 is considered as a parameter, which

characterizes the initial shape of the sample. The incompres-

sibility of the sample provides the expressions for the semi-axes

of the ellipsoid:

A ¼ A0ð1þ 3Þ; B ¼ C ¼ B0
ffiffiffiffiffiffiffiffiffiffiffi

1þ 3
p ; (23)

where 3 is the relative elongation (strain) of the sample. Then,

parameters g, g0 and 3 are related via the expression

g ¼ g0(1 + 3)3/2. (24)

In the absence of other mechanical loading on the MSE, the

sample tends to achieve the equilibrium state, which is char-

acterized by the equilibrium elongation 3eq. The equilibrium

elongation 3eq of the sample is determined from the minimum

of the free energy of the MSE with respect to 3 at the constant

value of external magnetic eld H0:

vF

v3

�

�

�

�

H0¼const

¼ 0: (25)

Here F is the free energy per unit volume. Further, one can

calculate the elastic modulus E as the second derivative of the

free energy with respect to 3:

E ¼ v2F

v32

�

�

�

�

3¼3eq

: (26)

Here we consider such a geometry of tensile deformation,

when the mechanical force is applied along the external

magnetic eld H0, i.e. along the x-axis. The free energy of the

MSE consists of two parts:31,32

F ¼ Felast + Fmagn, (27)

where Felast is the elastic free energy that arises from the

entropic elasticity of polymer chains, and Fmagn is the magnetic

free energy. In the case of small linear deformation of an

incompressible MSE, the elastic free energy per unit volume can

be expressed through the Hooke law:39

Felast ¼
E03

2

2
; (28)

where thematerial parameter E0 is the elastic modulus of a lled

polymer matrix. Here we assume that the value of E0 includes

contributions of different possible effects into the elastic energy

appearing under elongation of a sample. Among these effects are

the hydrodynamic reinforcement of an elastic matrix by the hard

particles at different concentrations,40,41 the reinforcement due

to appearance of glass-like layers formed by the polymer chains

that are localized on surfaces of active particles42 as well as the

contribution from deforming interphase domains in the

composite.42 However, we do not discuss here the dependence of

E0 on these effects, since this task is a special problem in the

theory of elasticity for isotropic reinforced rubbers.42 Instead, in

our theory we use E0 as a phenomenological parameter which

can be extracted from experimental mechanical data of an MSE

in the absence of the magnetic eld.

The magnetic free energy Fmagn for linear magnetics is given

by the following equation:35

Fmagn ¼ � 1

2
m0MVH0; (29)

where MV is the magnetization of the sample according to eqn

(18) and (19), and m0 ¼ 4p � 10�7 N A�2 is the permeability of

vacuum. Substituting eqn (19) into (29) we get

Fmagn ¼ � 1

2
m0

fH0
2

c�1 þ 1

3
� ff

: (30)
Fig. 8 The ratio MV/H0 as a function of f at fixed values of c and a (a)

and at fixed values of c and g (b).
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Note that f ¼ fmicro({rij}) + fmacro(g). Thus, the mechanical

properties of MSE are determined by the particle distribution

{rij} as well as by the initial shape of the sample g0.

Using eqn (25), (27), (28) and (30), one can obtain the equi-

librium elongation 3eq. Expanding into the Taylor series and

keeping the main term with respect to H0 we get 3eq for the

linear-response regime in the following form:

3eq ¼ K3

m0H0
2

2E0

; (31)

where the numerical coefficient K3 is given by

K3 ¼
f2vf

v3

c�1 þ 1

3
� ff

� �2

�

�

�

�

�

3¼0

: (32)

One can see from eqn (31) that the equilibrium elongation

3eq is a quadratic function of the external magnetic eld H0 in

the linear-response regime. The sign (contraction or expansion)

andmagnitude of 3eq are determined by the sign andmagnitude

of the parameter K3.

Using eqn (26)–(28) and (30), one can calculate the change of

the elastic modulus, DE ¼ E � E0 (i.e. the magneto-rheological

effect), for the linear-response regime in the following form:

DE ¼ KE

m0

2
H0

2: (33)

The coefficient KE is determined by the rst non-zero term in

the Taylor expansion and is given by

KE ¼ f2

�

c�1 þ 1

3
� ff

�2
� v

2f

v32
�

2f

�

vf

v3

�2

c�1 þ 1

3
� ff

0

B

B

B

@

1

C

C

C

A

�

�

�

�

�

3¼0

: (34)

Note that both coefficients K3 and KE depend not only on the

initial shape of theMSE sample g0, volume fraction f and initial

particle distribution {rij} but also on the coupling between the

particle distribution {rij} and elongation 3 due to the term
vf

v3
.

Below we consider two different approximations for the

coupling between {rij} and 3.

4.2 Absence of elastic coupling between sample elongation

and position of particles

In this section we consider the mechanical response of the

MSEs in the absence of elastic coupling between the particle

distribution {rij} and the elongation ratio 3:
vfrijg
v3

¼ 0. This

situation corresponds to slightly cross-linked MSEs, in which

the particles can freely move inside the polymer matrix, keeping

an initial spatial distribution at the variation of 3. In this case

the values of K3 and KE are determined by the shape-factor fmacro

and its derivatives as well as by the initial local particle distri-

bution through the factor fmicro, but not by its derivatives, since

vfmicro

v3
¼ 0 and

v2fmicro

v32
¼ 0. The initial particle distribution can

be either isotropic or anisotropic (see Section 2.2) that corre-

sponds to fmicro({rij}) ¼ 0 or fmicro({rij}) s 0, respectively. Below,

we consider these two cases in detail.

Isotropic particle distribution. In Fig. 9 the coefficients K3

and KE are presented as a function of g0 for the isotropic particle

distribution (represented by the SC lattice model, a ¼ 1) for

different values of f. One can see that the coefficient K3 is always

positive and thus 3eq > 0 as predicted by the continuum-

mechanics approach.

The coefficient KE varies the sign with increasing g0. It is

negative for strongly oblate ellipsoids. As one can see from Fig. 9

the coefficient K3 has a maximum in the vicinity g0 ¼ 1, whereas

the coefficient KE has a maximum which shis with the increase

of f from g0 z 1 to g0 z 3. Both coefficients K3 and KE increase

with increasing f at a xed value of g0, showing that the

magnetostriction and the magneto-rheological effect increase

with increase of f.

Anisotropic particle distribution. In Fig. 10 the coefficients

K3 and KE are presented as a function of g0 for the chain-like

(a ¼ 0.8), isotropic (a ¼ 1.0) and plane-like (a ¼ 1.2) structures

at f ¼ 0.3 and c[ 1. One can see that the coefficient K3 is

positive for all values of a and thus 3eq > 0. K3 has a maximum in

the vicinity of g0 ¼ 1, but for the chain-like structure this

maximum is shied to larger g0.

The coefficient KE varies the sign with increasing g0 similar to

the case of isotropic particle distribution. It is negative for strongly

oblate ellipsoids and has amaximum at g0z 2.5. Themain result

is that the anisotropy of the particle distribution strongly affects

the magneto-rheological effect DE: it is much more pronounced

for the chain-like structure with a ¼ 0.8 in comparison with the

isotropic (a ¼ 1.0) and plane-like (a ¼ 1.2) structures.

We note that similar qualitative behaviour of the equilibrium

elongation 3eq and magneto-rheological effect DE (not shown

here) takes place for other lattice models (BCC andHCP lattices)

that can be used for describing the initial particle distribution

within a MSE sample. Since the sign of K3 and KE is determined

only by the derivatives
vfmacro

v3

�

as
vfmicro

v3
¼ 0

�

, the use of

another lattice model does not change the signs of 3eq and DE

but provides only small quantitative changes in these

quantities.

Importantly, our general results presented above can repro-

duce the ndings of the continuum-mechanics approach for a

spherical sample (g0¼ 1) with the isotropic particle distribution

(a ¼ 1).24 Estimation of K3(g0) at g0 ¼ 1 gives 2/5. Thus, for

spherical samples we get a result that coincides with prediction

of the continuum-mechanics approach:24

3eq ¼
m0MV

2

5E0

: (35)

We see that 3eq in eqn (35) is always positive, being an even

function of magnetization MV. It increases at increasing

magnetization (i.e. at increasing magnitude of the internal

magnetic eld H0) for the uniformly magnetized elastic sphere.

Estimation of KE at g0 ¼ 1 gives 4/7 that provides the following

result:
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DE ¼ 2

7
m0MV

2: (36)

To our knowledge, the value DE was not yet calculated in the

framework of the continuum-mechanics approach. Thus, this

result is obtained for the rst time in the present study.

To summarize, the initial shape of the MSE sample g0,

volume fraction f and an initial particle distribution {rij}

strongly affect the equilibrium elongation 3eq and the magneto-

rheological effect DE even in the absence of elastic coupling

between {rij} and 3.

4.3 Strong affine coupling between sample elongation and

position of particles

Now we will consider the mechanical response of MSEs in the

presence of strong elastic coupling between the particle distribu-

tion {rij} and the elongation ratio 3. Thismeans that
vfmicro

v3
s0 and

v2fmicro

v32
s 0. This situation corresponds to highly cross-linked

MSEs, inwhich theparticles cannot freelymove inside thepolymer

matrix but rathermove affinely with it. In this case the values of K3
and KE are determined both by the shape-factor fmacro and by the

factor fmicro which depends on the local rearrangement of particle

distribution {rij} inside the microsphere. As in our previous

works,31,32weassume theaffinedeformationand incompressibility

of the sample. This allows us to calculate new positions of the

particles:

(rij)x ¼ (r0ij)x(1 + 3),

(rij)y ¼ (r0ij)y(1 + 3)�½,

(rij)z ¼ (r0ij)z(1 + 3)�½, (37)

where r0ij are the vectors connecting i-th and j-th particles in the

absence of the magnetic eld.

Note that aer application of the external magnetic eld

and deformation of the MSE, the function fmicro and its

derivatives should be calculated in the microsphere with a

constant radius r0. We calculate the values of K3 and KE using

eqn (32) and (34). In contrast to Section 4.2, here we take into

account that the factor fmicro is a function of 3 according to eqn

(5) and (37).

Isotropic particle distribution. In Fig. 11 the coefficient K3 is

presented as a function of g0 for the isotropic particle distri-

bution (represented by three different lattice models) at

different f and c[ 1.

One can see that the behaviour of the coefficient K3 shows a

strong dependence on the initial particle distribution due to the

elastic coupling between particle distribution {rij} and elonga-

tion ratio 3 in the microsphere. The SC and HCP lattice models

provide the negative coefficient K3, whereas the BCC lattice

model gives the positive value of K3. From eqn (32) it can be seen

that the sign of K3 is determined from the competition between
vfmicro

v3
and

vfmacro

v3
. As shown in Section 4.2, the contribution

from
vfmacro

v3
is always positive. In the SC lattice model the

Fig. 10 The coefficients K3 (a) and KE (b) as a function of the initial

shape g0, calculated for the chain-like (a ¼ 0.8), isotropic (a ¼ 1.0) and

plane-like (a ¼ 1.2) structures at f ¼ 0.3 and c ¼ 1000.

Fig. 9 The coefficients K3 (a) and KE (b) as a function of the initial shape

g0, calculated in the case of isotropic particle distribution for different

values of f and at c ¼ 1000.
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contribution from
vfmicro

v3
is found to be negative and exceeding

a contribution from the shape factor. In the HCP lattice model

we see that both contributions have the opposite sign, but the

contribution from
vfmicro

v3
exceeds the contribution from

vfmacro

v3
.

In the BCC lattice model both contributions have the same sign

and provide a positive value of K3. In all three lattice models the

increase of the volume fraction of particles f provides the

increase in the magnitude of K3.

It is interesting to compare the results given in Fig. 11a–c for

different lattices with the magneto-induced deformation 3eq of

MSEs with random (gas-like) distribution of particles.43,44 The

studies in ref. 43 and 44 demonstrated that for random distri-

bution of particles the value of 3eq can change its sign with

increasing g0: it is negative at g0� 1 or g0[ 1 and it is positive

at intermediate values of g0. One can see from Fig. 11 that for

the BCC lattice 3eq is positive and has a maximum, whereas it is

negative for the SC and HCP lattices. Thus, for a random

distribution (aer averaging “over all lattices”) one can expect

qualitatively a non-monotonic dependence of magneto-induced

deformation on the parameter g0 similar to that given in ref. 43

and 44. Application of the random distribution to our

formalism is a special task which can be solved in the nearest

future.

In Fig. 12 the coefficient KE is presented as a function of g0 in

the case of isotropic particle distribution (represented by three

different lattice models) for different f and c [ 1. Fig. 12

shows a strong dependence of the coefficient KE on the initial

particle distribution. In the case of the strong elastic coupling

between particle distribution {rij} and elongation ratio 3, only

the HCP lattice model predicts the positive values of KE, while

both the SC and BCC lattice models provide the negative

magneto-rheological effect. In all three lattice models the

increase of the volume fraction of particles f provides the

increase of the magnitude of KE.

Anisotropic particle distribution. Fig. 13 and 14 present the

coefficients K3 and KE as functions of g0 for the chain-like (a ¼
0.8), isotropic (a ¼ 1.0) and plane-like (a ¼ 1.2) structures at

volume fraction f ¼ 0.3 and magnetic susceptibility c[ 1.

One can see that the magnetostriction and magneto-

rheological effect are negative in the case of the SC lattice

model for chain-like, isotropic and plane-like structures. In the

case of the BCC lattice model, the values of K3 and KE vary their

sign: for the chain-like structures both coefficients are negative,

that is, similar to the case of the SC lattice model. For the

isotropic distribution K3 is positive, while KE is slightly negative.

For the plane-like structures both K3 and KE are positive. It

reects a non-trivial competition between contributions of

the factors
vfmicro

v3
and

vfmacro

v3
as well as

v2fmicro

v32
and

v2fmacro

v32
in

eqn (34). In the HCP lattice model, K3 also changes the sign

with a, whereas KE is always positive. We can conclude that

the presence of affine coupling between the particle distri-

bution {rij} and elongation ratio 3 strongly affects the

mechanical behaviour of the MSE under a homogeneous

magnetic eld.

Interestingly, for chain-like structures (a z 0.9) a non-

monotonic dependence of 3eq on g0 is observed similar to ref. 43

and 44: 3eq < 0 at g0 � 1 or g0[ 1 and 3eq > 0 at intermediate

values of g0. Moreover, it was shown in ref. 44 that MSEs, which

include short chains formed by particles, expand along the

magnetic eld. This effect is caused by a change of mutual

disposition of short chains.44 However for MSEs consisting of

long chains, which can percolate the sample, the mutual

disposition of chains does not play a major role and the

magneto-deformation is determined by a reduction of gaps

between the neighboring particles.44 In our model the disposi-

tion of neighboring particles inside the chain-like structures is

explicitly taken into account. This effect leads either to

contraction or to elongation of MSE along the magnetic eld,

the degree of deformation being a complicated function both of

the particle distribution and of the sample aspect ratio g0, see

Fig. 13. Thus, our theory demonstrates a much richer magneto-

mechanical behavior of MSEs depending on the spatial

Fig. 11 The coefficient K3 as a function of the initial shape g0, calcu-

lated in the case of isotropic particle distribution at different values of f

and at c ¼ 1000.
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distribution of magnetic particles as compared to previous

studies.43,44

5 Discussion

To show the strength of a new theoretical formalism, we

considered in this study two limiting cases of the coupling

between the particle distribution {rij} and the elongation ratio 3:

(i) no coupling (see Section 4.2), when the particles can freely

move inside a matrix keeping an initial spatial distribution at

sample deformation and (ii) strong affine coupling (see Section

4.3), when the particles are strictly xed within the polymer

matrix and move affinely with it.

The absence of the elastic coupling between {rij} and 3

provides qualitative predictions that are in good agreement with

experiments for MSEs with the isotropic particle distributions.

The equilibrium elongation 3eq (ref. 4 and 5) and the magneto-

rheological effect DE (ref. 8–11) have been shown to be positive

and to increase with increase of the magnetic eld H0. Only

strongly oblate samples (g0 < 0.5) such as thin disks and shims

exhibit the decrease of elastic modulus with increase of the

external magnetic eld. Further, in agreement with experi-

ments1 the change of elastic modulus is higher for the chain-

like structures as compared with the isotropic particle distri-

butions. However, the absence of the elastic coupling predicts

elongation of MSEs with chain-like structures which is in

contradiction with a number of experiments.4,6,7

The presence of the strong affine coupling between {rij} and 3

provides a much richer behaviour for different lattice models

that we used to mimic diverse particle distributions inside the

MSE. We found that 3eq and DE can be both positive and

negative, depending on the initial particle distribution. Thus,

assumption of the affine deformation strongly affects the

Fig. 12 The coefficient KE as a function of the initial shape g0,

calculated in the case of isotropic particle distribution at different
values of f and at c ¼ 1000.

Fig. 13 The coefficient K3 as a function of the initial shape g0, calcu-
lated for the chain-like (a ¼ 0.8), isotropic (a ¼ 1.0) and plane-like (a ¼
1.2) structures at f ¼ 0.3 and c ¼ 1000 for three different lattice

models.
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results for the sign of magnetostriction (contraction, expansion)

and magneto-rheological effect (soening, stiffening). The

presence of affine coupling predicts contraction of a sample for

MSEs with the chain-like particle distributions in agreement

with experiments.4,6,7

In all the cases considered we have neglected a possible

rearrangement of particles under a uniform magnetic eld in

the deforming sample. In particular, we used the assumption of

affine deformation, the physical meaning of which is that the

particles are rigidly attached to a polymer matrix. The use of

such an affine approach is valid for the case of small defor-

mations, i.e., at small external elds or highly cross-linked

matrices. The assumption is, however, not valid anymore for

MSEs prepared on the basis of so polymer matrices, in which

the exibility of polymer sub-chains between cross-links allows

a considerable degree of particle movement and even diffusion

under strong magnetic elds. Indeed, a noticeable

rearrangement of particles into chain-like structures was

observed recently in MSEs with initially isotropically distributed

magnetic particles under application of the magnetic eld.45,46

The authors have explained this effect by the use of a relatively

so polymer matrix which does not restrict alignment of

particles into the chains caused by the dipole–dipole interac-

tions between the particles. Also, recent constitutive model-

ling22 as well as the wavy particle-chain model30 shows an

importance of consideration of the particle alignment under the

magnetic eld for description of the mechanical behaviour of

MSEs. This means that elastic coupling in the samples with

relatively so polymer matrices is far from being affine.

Note that such a type of non-affine coupling can be taken

into account in the frame of our theoretical formalism if we

assume that the structure parameter a is a function of the

magnetic eld H0. The form of this function is presently

unknown and can be established by a careful comparison of

theoretical predictions based on different test functions with

existing experimental data45,46 or from appropriate nite

element simulations of MSEs. Nevertheless, some predictions

can already be made in the frame of the proposed formalism,

since it allows us to separate themacroscopic shape effects from

the local changes in particle distribution. For example, we may

utilize the results presented in Section 4.2 for particle distri-

butions with different anisotropy a. Especially, it is clearly seen

from Fig. 10 that at the same volume fraction of the magnetic

particles both the magnetostriction and the magneto-rheolog-

ical effects become much more pronounced, when the particle

distribution changes from an isotropic one to the chain-like

distribution. If we assume that such a rearrangement of

particles is caused by the applied magnetic eld, we should

expect a considerable increase of magneto-induced deforma-

tion and elastic moduli which agrees well with experimental

observations.45,46

6 Conclusions

In this paper we proposed a new theoretical formalism for the

mechanical properties of MSEs which unies two approaches:

the macroscopic continuum-mechanics and microscopic

approaches. We have shown that starting from a model with

explicit discrete particle distribution one can separate the

magnetic eld inside the MSE into two contributions: one

which depends on the shape of the sample and the other, which

depends on the local particle distribution. The behaviour of

magneto-induced deformation and elastic modulus as func-

tions of the magnetic eld is determined by a non-trivial

interplay between the macroscopic and microscopic contribu-

tions. Switching off one of these contributions results in a pure

microscopic approach31,32 or in a pure macroscopic approach.24

The proposed formalism allows us to perform separation

into the macroscopic and microscopic contributions both for

the isotropic and for the anisotropic particle distributions.

Thus, it can be used to investigate the mechanical properties of

MSEs for a wide variety of particle distributions, as well as for a

wide variety of sample shapes. The open question at the

moment is the strength of elastic coupling between particle

Fig. 14 The coefficient KE as a function of the initial shape g0,

calculated for the chain-like (a¼ 0.8), isotropic (a¼ 1.0) and plane-like
(a ¼ 1.2) structures at f ¼ 0.3 and c ¼ 1000 for three different lattice

models.

2224 | Soft Matter, 2014, 10, 2213–2225 This journal is © The Royal Society of Chemistry 2014

Soft Matter Paper

P
u
b
li

sh
ed

 o
n
 2

3
 D

ec
em

b
er

 2
0
1
3
. 
D

o
w

n
lo

ad
ed

 b
y
 S

L
U

B
 D

R
E

S
D

E
N

 o
n
 1

1
/4

/2
0
1
9
 1

2
:4

7
:0

0
 P

M
. 

View Article Online

https://doi.org/10.1039/c3sm52440j


displacements under a uniform magnetic eld and the sample

deformation. In this study we considered two limiting cases:

absence of the coupling and affine coupling. We presume

however that the nature of coupling in real samples should lie

somewhere between these two limiting cases. Its description

needs an additional consideration.

We hope that the theoretical formalism developed in the

present study will be useful for further development of this very

important class of smart materials. The further step of our

studies in this topic will be to nd the law of the coupling

between local particle movements and the macroscopic defor-

mation and studying its inuence on the mechanic properties

of MSEs with so polymer matrices.
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Polym. Adv. Technol., 2007, 18, 513–518.

3 X. Zhang, S. Peng, W. Wen and W. Li, Smart Mater. Struct.,

2008, 17, 045001.

4 G. Y. Zhou and Z. Y. Jiang, Smart Mater. Struct., 2004, 13,

309–316.

5 G. Diguet, E. Beaugnon and J. Y. Cavaillé, J. Magn. Magn.
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