74 research outputs found
The Herschel SPIRE Fourier Transform Spectrometer Spectral Feature Finder II. Estimating Radial Velocity of SPIRE Spectral Observation Sources
The Herschel SPIRE FTS Spectral Feature Finder (FF) detects significant
spectral features within SPIRE spectra and employs two routines, and external
references, to estimate source radial velocity. The first routine is based on
the identification of rotational CO emission, the second cross-correlates
detected features with a line template containing most of the characteristic
lines in typical far infra-red observations. In this paper, we outline and
validate these routines, summarise the results as they pertain to the FF, and
comment on how external references were incorporated.Comment: 12 pages, 16 figures, 1 table, accepted by MNRAS March 202
The Footprint Database and Web Services of the Herschel Space Observatory
Data from the Herschel Space Observatory is freely available to the public
but no uniformly processed catalogue of the observations has been published so
far. To date, the Herschel Science Archive does not contain the exact sky
coverage (footprint) of individual observations and supports search for
measurements based on bounding circles only. Drawing on previous experience in
implementing footprint databases, we built the Herschel Footprint Database and
Web Services for the Herschel Space Observatory to provide efficient search
capabilities for typical astronomical queries. The database was designed with
the following main goals in mind: (a) provide a unified data model for
meta-data of all instruments and observational modes, (b) quickly find
observations covering a selected object and its neighbourhood, (c) quickly find
every observation in a larger area of the sky, (d) allow for finding solar
system objects crossing observation fields. As a first step, we developed a
unified data model of observations of all three Herschel instruments for all
pointing and instrument modes. Then, using telescope pointing information and
observational meta-data, we compiled a database of footprints. As opposed to
methods using pixellation of the sphere, we represent sky coverage in an exact
geometric form allowing for precise area calculations. For easier handling of
Herschel observation footprints with rather complex shapes, two algorithms were
implemented to reduce the outline. Furthermore, a new visualisation tool to
plot footprints with various spherical projections was developed. Indexing of
the footprints using Hierarchical Triangular Mesh makes it possible to quickly
find observations based on sky coverage, time and meta-data. The database is
accessible via a web site (http://herschel.vo.elte.hu) and also as a set of
REST web service functions.Comment: Accepted for publication in Experimental Astronom
The reversal of the SF-density relation in a massive, X-ray selected galaxy cluster at z=1.58: results from Herschel
Dusty, star-forming galaxies have a critical role in the formation and
evolution of massive galaxies in the Universe. Using deep far-infrared imaging
in the range 100-500um obtained with the Herschel telescope, we investigate the
dust-obscured star formation in the galaxy cluster XDCP J0044.0-2033 at z=1.58,
the most massive cluster at z >1.5, with a measured mass M200= 4.7x10
Msun. We perform an analysis of the spectral energy distributions (SEDs) of 12
cluster members (5 spectroscopically confirmed) detected with >3
significance in the PACS maps, all ULIRGs. The individual star formation rates
(SFRs) lie in the range 155-824 Ms/yr, with dust temperatures of 2435 K.
We measure a strikingly high amount of star formation (SF) in the cluster core,
SFR ( 1875158 Ms/yr, 4x higher than the amount of star
formation in the cluster outskirts. This scenario is unprecedented in a galaxy
cluster, showing for the first time a reversal of the SF-density relation at
z~1.6 in a massive cluster.Comment: Letter accepted for publication in MNRAS, ESA Press Release on 18
December 201
FIR/submm spectroscopy with Herschel: first results from the VNGS and H-ATLAS surveys
The FIR/submm window is one of the least-studied regions of the
electromagnetic spectrum, yet this wavelength range is absolutely crucial for
understanding the physical processes and properties of the ISM in galaxies. The
advent of the Herschel Space Observatory has opened up the entire FIR/submm
window for spectroscopic studies. We present the first FIR/submm spectroscopic
results on both nearby and distant galaxies obtained in the frame of two
Herschel key programs: the Very Nearby Galaxies Survey and the Herschel ATLAS
Star formation in the cluster CLG0218.3-0510 at z=1.62 and its large-scale environment: the infrared perspective
The galaxy cluster CLG0218.3-0510 at z=1.62 is one of the most distant galaxy
clusters known, with a rich muti-wavelength data set that confirms a mature
galaxy population already in place. Using very deep, wide area (20x20 Mpc)
imaging by Spitzer/MIPS at 24um, in conjunction with Herschel 5-band imaging
from 100-500um, we investigate the dust-obscured, star-formation properties in
the cluster and its associated large scale environment. Our galaxy sample of
693 galaxies at z=1.62 detected at 24um (10 spectroscopic and 683 photo-z)
includes both cluster galaxies (i.e. within r <1 Mpc projected clustercentric
radius) and field galaxies, defined as the region beyond a radius of 3 Mpc. The
star-formation rates (SFRs) derived from the measured infrared luminosity range
from 18 to 2500 Ms/yr, with a median of 55 Ms/yr, over the entire radial range
(10 Mpc). The cluster brightest FIR galaxy, taken as the centre of the galaxy
system, is vigorously forming stars at a rate of 25670 Ms/yr, and the
total cluster SFR enclosed in a circle of 1 Mpc is 116196 Ms/yr. We
estimate a dust extinction of about 3 magnitudes by comparing the SFRs derived
from [OII] luminosity with the ones computed from the 24um fluxes. We find that
the in-falling region (1-3 Mpc) is special: there is a significant decrement
(3.5x) of passive relative to star-forming galaxies in this region, and the
total SFR of the galaxies located in this region is lower (130 Ms/yr/Mpc2) than
anywhere in the cluster or field, regardless of their stellar mass. In a
complementary approach we compute the local galaxy density, Sigma5, and find no
trend between SFR and Sigma5. However, we measure an excess of star-forming
galaxies in the cluster relative to the field by a factor 1.7, that lends
support to a reversal of the SF-density relation in CLG0218.Comment: accepted for publication in MNRAS. v2: minor correction
Herschel SPIRE FTS Relative Spectral Response Calibration
Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain
emission from both the Herschel Telescope and the SPIRE Instrument itself, both
of which are typically orders of magnitude greater than the emission from the
astronomical source, and must be removed in order to recover the source
spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are
removed during data reduction using relative spectral response calibration
curves and emission models. We present the evolution of the methods used to
derive the relative spectral response calibration curves for the SPIRE FTS. The
relationship between the calibration curves and the ultimate sensitivity of
calibrated SPIRE FTS data is discussed and the results from the derivation
methods are compared. These comparisons show that the latest derivation methods
result in calibration curves that impart a factor of between 2 and 100 less
noise to the overall error budget, which results in calibrated spectra for
individual observations whose noise is reduced by a factor of 2-3, with a gain
in the overall spectral sensitivity of 23% and 21% for the two detector bands,
respectively.Comment: 15 pages, 13 figures, accepted for publication in Experimental
Astronom
Relative pointing offset analysis of calibration targets with repeated observations with Herschel-SPIRE Fourier-Transform Spectrometer
We present a method to derive the relative pointing offsets for SPIRE
Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration
targets, which were observed regularly throughout the Herschel mission. We
construct ratios of the spectra for all observations of a given source with
respect to a reference. The reference observation is selected iteratively to be
the one with the highest observed continuum. Assuming that any pointing offset
leads to an overall shift of the continuum level, then these ratios represent
the relative flux loss due to mispointing. The mispointing effects are more
pronounced for a smaller beam, so we consider only the FTS short wavelength
array (SSW, 958-1546 GHz) to derive a pointing correction. We obtain the
relative pointing offset by comparing the ratio to a grid of expected losses
for a model source at different distances from the centre of the beam, under
the assumption that the SSW FTS beam can be well approximated by a Gaussian. In
order to avoid dependency on the point source flux conversion, which uses a
particular observation of Uranus, we use extended source flux calibrated
spectra to construct the ratios for the SSOs. In order to account for continuum
variability, due to the changing distance from the Herschel telescope, the SSO
ratios are normalised by the expected model ratios for the corresponding
observing epoch. We confirm the accuracy of the derived pointing offset by
comparing the results with a number of control observations, where the actual
pointing of Herschel is known with good precision. Using the method we derived
pointing offsets for repeated observations of Uranus (including observations
centred on off-axis detectors), Neptune, Ceres and NGC7027. The results are
used to validate and improve the point-source flux calibration of the FTS.Comment: 17 pages, 19 figures, accepted for publication in Experimental
Astronom
ESASky v.2.0: all the skies in your browser
With the goal of simplifying the access to science data to scientists and
citizens, ESA recently released ESASky (http://sky.esa.int), a new open-science
easy-to-use portal with the science-ready Astronomy data from ESA and other
major data providers. In this presentation, we announced version 2.0 of the
application, which includes access to all science-ready images, catalogues and
spectra, a feature to help planning of future JWST observations, the
possibility to search for data of all (targeted and serendipitously observed)
Solar System Objects in Astronomy images, a first support to mobile devices and
several other smaller usability features. We also discussed the future
evolution of the portal and the lessons learnt from the 1+ year of operations
from the point of view of access, visualization and manipulation of big
datasets (all sky maps, also called HiPS) and large catalogues (like e.g. the
Gaia DR1 catalogues or the Hubble Source Catalogue) and the design and
validation principles for the development of friendly GUIs for thin layer web
clients aimed at scientists.Comment: 4 pages, 2 figures, ADASS 2017 conference proceeding
- …