74 research outputs found

    Complete RNA inverse folding: computational design of functional hammerhead ribozymes

    Full text link
    Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/.Comment: 17 pages, 2 tables, 7 figures, final version to appear in Nucleic Acids Researc

    RNAiFold2T: Constraint Programming design of thermo-IRES switches

    Full text link
    Motivation: RNA thermometers (RNATs) are cis-regulatory ele- ments that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. Results: Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allow- ing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent transla- tion efficiency is approximately 50% greater at 42?C than 30?C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. Availability: RNAiFold2T is publicly available as as part of the new re- lease RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http: //bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C++ and uses OR-Tools CP search engine.Comment: 24 pages, 5 figures, Intelligent Systems for Molecular Biology (ISMB 2016), to appear in journal Bioinformatics 201

    Boosting video tracking performance by means of Tabu Search in Intelligent Visual Surveillance Systems

    Get PDF
    In this paper, we present a fast and efficient technique for the data association problem applied to visual tracking systems. Visual tracking process is formulated as a combinatorial hypotheses search with a heuristic evaluation function taking into account structural and specific information such as distance, shape, color, etc. We introduce a Tabu Search algorithm which performs a search on an indirect space. A novel problem formulation allows us to transform any solution into the real search space, which is needed for fitness calculation, in linear time. This new formulation and the use of auxiliary structures yields a fast transformation from a blob-to-track assignment space to the real shape and position of tracks space (while calculating fitness in an incremental fashion), which is key in order to produce efficient and fast results. Other previous approaches are based on statistical techniques or on evolutionary algorithms. These techniques are quite efficient and robust although they cannot converge as fast as our approach.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS2008-07029-C02-02.Publicad

    Computing folding pathways between RNA secondary structures

    Get PDF
    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder

    Energy parameters and novel algorithms for an extended nearest neighbor energy model of RNA.

    No full text
    We describe the first algorithm and software, RNAenn, to compute the partition function and minimum free energy secondary structure for RNA with respect to an extended nearest neighbor energy model. Our next-nearest-neighbor triplet energy model appears to lead to somewhat more cooperative folding than does the nearest neighbor energy model, as judged by melting curves computed with RNAenn and with two popular software implementations for the nearest-neighbor energy model. A web server is available at http://bioinformatics.bc.edu/clotelab/RNAenn/

    RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules.

    No full text
    Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules.National Science Foundation [DBI-1262439]. Funding for open access charge: National Science Foundation./nConflict of interest statement. None declared

    RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules.

    No full text
    Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules.National Science Foundation [DBI-1262439]. Funding for open access charge: National Science Foundation./nConflict of interest statement. None declared

    Pseudocode for Brown's algorithm.

    No full text
    <p>Pseudocode for Brown's algorithm.</p
    • 

    corecore