Nanotechnology and synthetic biology currently constitute one of the most
innovative, interdisciplinary fields of research, poised to radically transform
society in the 21st century. This paper concerns the synthetic design of
ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can
determine all RNA sequences whose minimum free energy secondary structure is a
user-specified target structure. Using RNAiFold, we design ten cis-cleaving
hammerhead ribozymes, all of which are shown to be functional by a cleavage
assay. We additionally use RNAiFold to design a functional cis-cleaving
hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on
this small set of hammerheads suggests that cleavage rate of computationally
designed ribozymes may be correlated with positional entropy, ensemble defect,
structural flexibility/rigidity and related measures. Artificial ribozymes have
been designed in the past either manually or by SELEX (Systematic Evolution of
Ligands by Exponential Enrichment); however, this appears to be the first
purely computational design and experimental validation of novel functional
ribozymes. RNAiFold is available at
http://bioinformatics.bc.edu/clotelab/RNAiFold/.Comment: 17 pages, 2 tables, 7 figures, final version to appear in Nucleic
Acids Researc