Motivation: RNA thermometers (RNATs) are cis-regulatory ele- ments that
change secondary structure upon temperature shift. Often involved in the
regulation of heat shock, cold shock and virulence genes, RNATs constitute an
interesting potential resource in synthetic biology, where engineered RNATs
could prove to be useful tools in biosensors and conditional gene regulation.
Results: Solving the 2-temperature inverse folding problem is critical for RNAT
engineering. Here we introduce RNAiFold2T, the first Constraint Programming
(CP) and Large Neighborhood Search (LNS) algorithms to solve this problem.
Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and
genetic algorithm) inverse folding show that our software generates two orders
of magnitude more solutions, thus allow- ing ample exploration of the space of
solutions. Subsequently, solutions can be prioritized by computing various
measures, including probability of target structure in the ensemble, melting
temperature, etc. Using this strategy, we rationally designed two thermosensor
internal ribosome entry site (thermo-IRES) elements, whose normalized
cap-independent transla- tion efficiency is approximately 50% greater at 42?C
than 30?C, when tested in reticulocyte lysates. Translation efficiency is lower
than that of the wild-type IRES element, which on the other hand is fully
resistant to temperature shift-up. This appears to be the first purely
computational design of functional RNA thermoswitches, and certainly the first
purely computational design of functional thermo-IRES elements. Availability:
RNAiFold2T is publicly available as as part of the new re- lease RNAiFold3.0 at
https://github.com/clotelab/RNAiFold and http:
//bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as
well. The software is written in C++ and uses OR-Tools CP search engine.Comment: 24 pages, 5 figures, Intelligent Systems for Molecular Biology (ISMB
2016), to appear in journal Bioinformatics 201