29 research outputs found

    Draft Genome Sequences of Two Vibrio parahaemolyticus Strains Associated with Gastroenteritis after Raw Seafood Ingestion in Colorado.

    Get PDF
    Vibrio parahaemolyticus is a Gram-negative pathogen associated with gastrointestinal and wound infections after exposure to raw seafood or contaminated waters. We report here the whole-genome sequences of two stool isolates (CDC-AM50933 and CDC-AM43539) from patients in Colorado presenting with gastroenteritis after ingesting raw seafood

    Protonation and Photocatalytic Activity of the Rb 2

    Get PDF
    The Rb2La2Ti3O10 layered oxide was synthesized by the solid-state method. Three phases with different protonation degrees and intercalated water contents were obtained from the initial compound by the treatment with distilled water and hydrochloric acid. The obtained samples were characterized by powder X-ray diffraction, SEM, X-ray microanalysis, BET, DRS, and TG. It was found that the complete ion exchange of Rb+ for H+ in the layered oxide Rb2La2Ti3O10 proceeds through the formation of two metastable intermediate phases with average protonation degrees of 0.5 and 0.75, which successively transform from one to another. Each of these phase transformations is accompanied not only by the contraction of the interlayer distance but also by the displacement of adjacent perovskite layers by 1/2 of the cell parameter which results in the change in the space group. The photocatalytic activity of obtained samples decreases with the increase in the protonation degree, which correlates with the decrease in the intercalated water content

    Ability for vegetation and spore formation of <i>Bacillus anthracis</i> strains with different phenotypical properties under soil simulating conditions

    Get PDF
    Introduction. The study of the ability of Bacillus anthracis strains with different phenotypic properties to spore germination, reproduction and sporulation on a medium based on an aqueous soil extract can help assess the significance of these processes in the formation and maintenance of soil anthrax foci. Aim. The analysis of individual characteristics of the development of a vegetative culture of anthrax pathogen strains with different phenotypes in a soil medium model. Materials and methods. On a group of anthrax microbe strains with different plasmid composition and virulence, the possibility of spore germination, reproduction of bacilli and, at least in some of them, productive spore formation on the soil medium was studied. Results. Three variants of culture development of B. anthracis strains were identified: 1 spores remain intact, not germinating; 2 after germination of spores, bacilli are formed, which multiply with different intensity, passing into involutional forms without spore formation; 3 the passage of a complete physiological cycle "sporebacillusspore". The presence of 2% blood in the soil environment contributed to the germination of spores and reproduction of the culture, but inhibited the process of sporulation during the observation period of 3 days. No correlation was found between a certain phenotype of the studied strains of B. anthracis and the ability to germinate and vegetate on soil media. Conclusion. The data obtained that only 17% of CFU gives rise to the formation of colonies on the soil medium suggest the heterogeneity of the properties of the population of the studied strains. Isolation of such cultures and their further detailed study will make it possible to identify the most significant complexes of biological properties for the realization of a complete physiological cycle under soil-simulating conditions

    An Experimental and Computational Study of Effects of Microtubule Stabilization on T-Cell Polarity

    Get PDF
    T-killer cells eliminate infected and cancerous cells with precision by positioning their centrosome near the interface (immunological synapse) with the target cell. The mechanism of centrosome positioning has remained controversial, in particular the role of microtubule dynamics in it. We re-examined the issue in the experimental model of Jurkat cells presented with a T cell receptor-binding artificial substrate, which permits controlled stimulation and reproducible measurements. Neither 1-µM taxol nor 100-nM nocodazole inhibited the centrosome positioning at the “synapse” with the biomimetic substrate. At the same time, in micromolar taxol but not in nanomolar nocodazole the centrosome adopted a distinct peripheral rather than the normally central position within the synapse. This effect was reproduced in a computational energy-minimization model that assumed no microtubule dynamics, but only a taxol-induced increase in the length of the microtubules. Together, the experimental and computational results indicate that microtubule dynamics are not essential for the centrosome positioning, but that the fit of the microtubule array in the deformed body of the conjugated T cell is a major factor. The possibility of modulating the T-cell centrosome position with well-studied drugs and of predicting their effects in silico appears attractive for designing anti-cancer and antiviral therapies

    Efficiency of Organelle Capture by Microtubules as a Function of Centrosome Nucleation Capacity: General Theory and the Special Case of Polyspermia

    Get PDF
    Transport of organelles along microtubules is essential for the cell metabolism and morphogenesis. The presented analysis derives the probability that an organelle of a given size comes in contact with the microtubule aster. The question is asked how this measure of functionality of the microtubule aster is controlled by the centrosome. A quantitative model is developed to address this question. It is shown that for the given set of cellular parameters, such as size and total tubulin content, a centrosome nucleation capacity exists that maximizes the probability of the organelle capture. The developed general model is then applied to the capture of the female pronucleus by microtubules assembled on the sperm centrosome, following physiologically polyspermic fertilization. This application highlights an unintuitive reflection of nonlinearity of the nucleated polymerization of the cellular pool of tubulin. The prediction that the sperm centrosome should lower its nucleation capacity in the face of the competition from the other sperm is a stark illustration of the new optimality principle. Overall, the model calls attention to the capabilities of the centrosomal pathway of regulation of the transport-related functionality of the microtubule cytoskeleton. It establishes a quantitative and conceptual framework that can guide experiment design and interpretation

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions
    corecore