8 research outputs found

    HAD hydrolase function unveiled by substrate screening: enzymatic characterization of Arabidopsis thaliana subclass I phosphosugar phosphatise AtSgpp

    Get PDF
    [EN] This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for dl-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-d-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg2+ ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K (m) in the range of 3.6-7.7 mM). AtSgpp promiscuity is preferentially detectable on d-ribose-5-phosphate, 2-deoxy-d-ribose-5-phosphate, 2-deoxy-d-glucose-6-phosphate, d-mannose-6-phosphate, d-fructose-1-phosphate, d-glucose-6-phosphate, dl-glycerol-3-phosphate, and d-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.We acknowledge Professors Montserrat Pages (CSIC Barcelona, Spain), Thomas Kupke (University of Heidelberg, Germany) and Manuel Hernandez (University Polytechnic of Valencia, Spain) for their warm support. We also thank the advice and provision of plasmid pSBETa by Dr. Florence Vignols and Yves Meyer (University of Perpignan, France); the computer software helps by Ramon Nogales-Rangel and Alexis Gonzalez-Policarpo; Eugenio Grau-Ferrando for kind advice and help for sequencing. This work was funded by the 10 month research contract MEC-FEDER to J.A.C.-M., 10 month research contract JAE-DOC to I.M.-S. and by the research project BIO2006-10138 from the MEC-FEDER of Spain to F.A.C.-M. In memoriam of Dr. Mari Cruz Cutanda-Perez.Caparrós Martín, JA.; Mccarthy Suarez, I.; Culiañez Macia, FA. (2013). HAD hydrolase function unveiled by substrate screening: enzymatic characterization of Arabidopsis thaliana subclass I phosphosugar phosphatise AtSgpp. Planta. 237(4):943-954. https://doi.org/10.1007/s00425-012-1809-5S9439542374Allen KN, Dunaway-Mariano D (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci 29:495–503Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410Ames BN (1966) Assay of inorganic phosphate, total phosphate, and phosphatases. Methods Enzymol 8:115–118Böhmer M, Schroeder JI (2011) Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. Plant J 67:105–118Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Burroughs AM, Allen KN, Dunaway-Mariano D, Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361:1003–1034Caparrós-Martín JA, Reiland S, Köchert K, Cutanda MC, Culiáñez-Macia FA (2007) Arabidopsis thaliana AtGpp 1 and AtGpp2: two novel low molecular weight phosphatases involved in plant glycerol metabolism. Plant Mol Biol 63:505–517Collet JF, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E (1998) A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem 273:14107–14112Corpet F, Servantm F, Gouzy J, Kahn D (2000) ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res 28:267–269Cutanda MC (2003) Effect of altering levels of hexoses phosphate in carbohydrate metabolism and glucose signalling in yeast and plants. PhD thesis, Polytechnic University of Valencia, Valencia, SpainHiggins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680Koonin EV, Tatusov RL (1994) Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol 244:125–132Kupke T, Caparrós-Martín JA, Malquichagua Salazar KJ, Culiàñez-Macià FA (2009) Biochemical and physiological characterization of Arabidopsis thaliana AtCoAse: a Nudix CoA hydrolyzing protein that improves plant development. Physiol Plant 135:365–378Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF (2005) Enzyme genomics: application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev 29:263–279Kuznetsova E, Proudfoo M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF (2006) Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J Biol Chem 281:36149–36161Lahiri SD, Zhang G, Dai J, Dunaway-Mariano D, Allen KN (2004) Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochemistry 43:2812–2820Lahiri SD, Zhang G, Dunaway-Mariano D, Allen KN (2006) Diversification of function in the haloacid dehalogenase enzyme superfamily: the role of the cap domain in hydrolytic phosphorus—carbon bond cleavage. Bioorganic Chem 34:394–409Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256Lu Z, Dunaway-Mariano D, Allen KN (2005) HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131. Biochemistry 44:8684–8696Lu Z, Dunaway-Mariano D, Allen KN (2008) The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state. Proc Natl Acad Sci USA 105:5687–5692Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborMorais MC, Zhang W, Baker AS, Zhang G, Dunaway-Mariano D, Allen KN (2000) The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochemistry 39:10385–10396Morais MC, Zhang G, Zhang W, Olsen DB, Dunaway-Mariano D, Allen KN (2004) X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis. J Biol Chem 279:9353–9361Mueller WS, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497Norbeck J, Pahlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp 2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881Rández-Gil F, Blasco A, Prieto JA, Sanz P (1995) DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast 11:1233–1240Rao KN, Kumaran D, Seetharaman J, Bonanno JB, Burley SK, Swaminathan S (2006) Crystal structure of trehalose-6-phosphate phosphatase-related protein: biochemical and biological implications. Protein Sci 15:1735–1744Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379Schenk PM, Baumann S, Mattes R, Steinbiss HH (1995) Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. Biotechniques 19:196–200Selengut JD (2001) MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases. Biochemistry 40:12704–12711Selengut JD, Levine RL (2000) MDP-1: a novel eukaryotic magnesium-dependent phosphatase. Biochemistry 39:8315–8324Shin DH, Roberts A, Jancarik J, Yocota H, Kim R, Wemmer DE, Kim S-H (2003) Crystal structure of a phosphatase with a unique substrate binding domain from Thermotoga maritime. Protein Sci 12:1464–1472Sussman I, Avron M (1981) Characterization and partial puri-fication of dl-glycerol-1-phosphatase from Dunaliella salina. Biochim Biophys Acta 661:199–204The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815Tremblay LW, Dunaway-Mariano D, Allen KN (2006) Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Biochemistry 45:1183–1193Vicient CM, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268:412–413Wang W, Cho HS, Kim R, Jancarik J, Yokota H, Nguyen HH, Grigoriev IV, Wemmer DE, Kim S-H (2002) Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic “snapshots” of intermediate states. J Mol Biol 319:421–431Zhang G, Mazurkie AS, Dunaway-Mariano D, Allen KN (2002) Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis. Biochemistry 41:13370–13377Zhang G, Morais MC, Dai J, Zhang W, Dunaway-Mariano D, Allen KN (2004) Investigation of metal Ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily. Biochemistry 43:4990–4997Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–263

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Sequence determinants of substrate ambiguity in a HAD phosphosugar phosphatase of Arabidopsis Thaliana

    No full text
    © The Author(s).The Arabidopsis thaliana broad-range sugar phosphate phosphatase AtSgpp (NP_565895.1, locus AT2G38740) and the specific DL-glycerol-3-phosphatase AtGpp (NP_568858.1, locus AT5G57440) are members of the wide family of magnesium-dependent acid phosphatases subfamily I with the C1-type cap domain haloacid dehalogenase-like hydrolase proteins (HAD). Although both AtSgpp and AtGpp have a superimporsable α/β Rossmann core active site, they differ with respect to the loop-5 of the cap domain, accounting for the differences in substrate specificity. Recent functional studies have demonstrated the essential but not sufficient role of the signature sequence within the motif-5 in substrate discrimination. To better understand the mechanism underlying the control of specificity, we explored additional sequence determinants underpinning the divergent evolutionary selection exerted on the substrate affinity of both enzymes. The most evident difference was found in the loop preceding the loop-5 of the cap domain, which is extended in three additional residues in AtSgpp. To determine if the shortening of this loop would constrain the substrate ambiguity of AtSgpp, we deleted these three aminoacids. The kinetic analyses of the resulting mutant protein AtSgpp3Δ (ΔF53, ΔN54, ΔN55) indicate that promiscuity is compromised. AtSgpp3Δ displays highest level of discrimination for D-ribose-5-phosphate compared to the rest of phosphate ester metabolites tested, which may suggest a proper orientation of D-ribose-5-phosphate in the AtSgpp3Δ active siteThis research was funded by MEC-FEDER of Spain, grant number BIO2006-10138.Peer reviewe

    The vaccine adjuvant extra domain A from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts

    No full text
    14 p., 7 figures and bibliographyWe previously showed that recombinant extra domain A from fibronectin (EDA) purified from Escherichia coli was able to bind to toll-like receptor 4 (TLR4) and stimulate production of proinflammatory cytokines by dendritic cells. Because EDA could be used as an adjuvant for vaccine development, we aimed to express it from the tobacco plastome, a promising strategy in molecular farming. To optimize the amount of recombinant EDA (rEDA) in tobacco leaves, different downstream sequences were evaluated as potential fusion tags. Plants generated by tobacco plastid transformation accumulated rEDA at levels up to 2% of the total cellular protein (equivalent to approximately 0. 3 mg/g fresh weight) when translationally fused to the first 15 amino acids of green fluorescence protein (GFP). The recombinant adjuvant could be purified from tobacco leaves using a simple procedure, involving ammonium sulfate precipitation and anion exchange chromatography. Purified protein was able to induce production of tumour necrosis factor-α (TNF-α) either by bone marrow-derived dendritic cells or THP-1 monocytes. The rEDA produced in tobacco leaves was also able to induce upregulation of CD54 and CD86 maturation markers on dendritic cells, suggesting that the rEDA retains the proinflammatory properties of the EDA produced in E. coli and thus could be used as an adjuvant in vaccination against infectious agents and cancer. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of this protein vaccine adjuvant.This work was supported by a grant (Proyecto EUROINNOVA) from the Department of Innovation (Gobierno de Navarra)Peer reviewe

    The kinetic analysis of the substrate specificity of motif 5 in a HAD hydrolase-type phosphosugar phosphatase of Arabidopsis thaliana

    No full text
    The Arabidopsis thaliana gene AtSgpp (locus tag At2g38740), encodes a protein whose sequence motifs and expected structure reveal that it belongs to the HAD hydrolases subfamily I, with the C1-type cap domain (Caparrós-Martín et al. in Planta 237:943-954, 2013). In the presence of Mg 2+ ions, the enzyme has a phosphatase activity over a wide range of phosphosugar substrates. AtSgpp promiscuity is preferentially detectable on d-ribose-5-phosphate, 2-deoxy-d-ribose-5-phosphate, 2-deoxy-d-glucose-6-phosphate, d-mannose-6-phosphate, d-fructose-1-phosphate, d-glucose-6-phosphate, dl-glycerol-3-phosphate, and d-fructose-6-phosphate. Site-directed mutagenesis analysis of the putative signature sequence motif-5 (IAGKH), which defines its specific chemistry, brings to light the active-site residues Ala-69 and His-72. Mutation A69M, changes the pH dependence of AtSgpp catalysis, and mutant protein AtSgpp-H72K was inactive in phosphomonoester dephosphorylation. It was also observed that substitutions I68M and K71R slightly affect the substrate specificity, while the replacement of the entire motif for that of homologous dl-glycerol-3-phosphatase AtGpp (MMGRK) does not switch AtSgpp activity to the specific targeting for dl-glycerol-3-phosphate. © 2014 European Union

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore