30,302 research outputs found

    On the Algebraic Structure of Gravitational Descendants in CP(n-1) Coset Models

    Full text link
    We investigate how specific free-field realizations of twisted N=2 supersymmetric coset models give rise to natural extensions of the ``matter'' Hilbert spaces in such a manner as to incorporate the various gravitational excitations. In particular, we show that adopting a particular screening prescription is equivalent to imposing the requisite equivariance condition on cohomology. We find a simple algebraic characterization of the WnW_n-gravitational ground ring spectra of these theories in terms of affine-SU(n)SU(n) highest weights..Comment: 12p, harvmac/lanlmac with hyperlinks, 1 uuencoded PostScript figure, CERN-TH.7442/94, USC-94/01

    Free Field Realization of N=2N=2 Super W3W_{3} Algebra

    Full text link
    We study the quantum N=2N=2 super-W3W_{3} algebra using the free field realization, which is obtained from the supersymmetric Miura transformation associated with the Lie superalgebra A(21)A(2|1). We compute the full operator product expansions of the algebra explicitly. It is found that the results agree with those obtained by the OPE method.Comment: 10 pages, latex, NBI-HE-93-0

    Food-chain competition influences gene's size

    Full text link
    We have analysed an effect of the Bak-Sneppen predator-prey food-chain self-organization on nucleotide content of evolving species. In our model, genomes of the species under consideration have been represented by their nucleotide genomic fraction and we have applied two-parameter Kimura model of substitutions to include the changes of the fraction in time. The initial nucleotide fraction and substitution rates were decided with the help of random number generator. Deviation of the genomic nucleotide fraction from its equilibrium value was playing the role of the fitness parameter, BB, in Bak-Sneppen model. Our finding is, that the higher is the value of the threshold fitness, during the evolution course, the more frequent are large fluctuations in number of species with strongly differentiated nucleotide content; and it is more often the case that the oldest species, which survive the food-chain competition, might have specific nucleotide fraction making possible generating long genesComment: 11 pages including 7 figure

    Variable coordination of amine functionalised N-heterocyclic carbene ligands to Ru, Rh and Rr: C-H and N-H activation and catalytic transfer hydrogenation

    Get PDF
    Chelating amine and amido complexes of late transition metals are highly valuable bifunctional catalysts in organic synthesis, but complexes of bidentate amine–NHC and amido–NHC ligands are scarce. Hence, we report the reactions of a secondary-amine functionalised imidazolium salt 2a and a primary-amine functionalised imidazolium salt 2b with [( p -cymene)RuCl 2 ] 2 and [Cp*MCl 2 ] 2 (M = Rh, Ir). Treating 2a with [Cp*MCl 2 ] 2 and NaOAc gave the cyclometallated compounds Cp*M(C,C)I (M = Rh, 3 ;M = Ir, 4 ), resulting from aromatic C–H activation. In contrast, treating 2b with [( p -cymene)RuCl 2 ] 2 ,Ag 2 O and KI gave the amine–NHC complex [( p -cymene)Ru(C,NH 2 )I]I ( 5 ). The reaction of 2b with [Cp*MCl 2 ] 2 (M = Rh, Ir), NaO t Bu and KI gave the amine–NHC complex [Cp*Rh(NH 2 )I]I ( 6 ) or the amido–NHC complex Cp*Ir(C,NH)I ( 7 ); both protonation states of the Ir complex could be accessed: treating 7 with trifluoroacetic acid gave the amine–NHC complex [Cp*Ir(C,NH 2 )I][CF 3 CO 2 ]( 8 ). These are the first primary amine– or amido–NHC complexes of Rh and Ir. Solid-state structures of the complexes 3–8 have been determined by single crystal X-ray diffraction. Complexes 5 , 6 and 7 are pre-catalysts for the catalytic transfer hydrogenation of acetophenone to 1-phenylethanol, with ruthenium complex 5 demonstrating especially high reactivity

    Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell Homeostasis

    Get PDF
    The Ten-eleven translocation (TET) enzymes regulate gene expression by promoting DNA demethylation and partnering with chromatin modifiers. TET2, a member of this family, is frequently mutated in hematological disorders. The contributions of TET2 in hematopoiesis have been attributed to its DNA demethylase activity, and the significance of its nonenzymatic functions has remained undefined. To dissect the catalytic and non-catalytic requirements of Tet2, we engineered catalytically inactive Tet2 mutant mice and conducted comparative analyses of Tet2 mutant and Tet2 knockout animals. Tet2 knockout mice exhibited expansion of hematopoietic stem and progenitor cells (HSPCs) and developed myeloid and lymphoid disorders, while Tet2 mutant mice predominantly developed myeloid malignancies reminiscent of human myelodysplastic syndromes. HSPCs from Tet2 knockout mice exhibited distinct gene expression profiles, including downregulation of Gata2. Overexpression of Gata2 in Tet2 knockout bone marrow cells ameliorated disease phenotypes. Our results reveal the non-catalytic roles of TET2 in HSPC homeostasis

    A Neumann interface optimal control problem with elliptic PDE constraints and its discretization and numerical analysis

    Full text link
    We study an optimal control problem governed by elliptic PDEs with interface, which the control acts on the interface. Due to the jump of the coefficient across the interface and the control acting on the interface, the regularity of solution of the control problem is limited on the whole domain, but smoother on subdomains. The control function with pointwise inequality constraints is served as the flux jump condition which we called Neumann interface control. We use a simple uniform mesh that is independent of the interface. The standard linear finite element method can not achieve optimal convergence when the uniform mesh is used. Therefore the state and adjoint state equations are discretized by piecewise linear immersed finite element method (IFEM). While the accuracy of the piecewise constant approximation of the optimal control on the interface is improved by a postprocessing step which possesses superconvergence properties; as well as the variational discretization concept for the optimal control is used to improve the error estimates. Optimal error estimates for the control, suboptimal error estimates for state and adjoint state are derived. Numerical examples with and without constraints are provided to illustrate the effectiveness of the proposed scheme and correctness of the theoretical analysis.Comment: 31pages, 12 figures, 4 table

    Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors

    Full text link
    Upon introducing charge carriers into the copper-oxygen sheets of the enigmatic lamellar cuprates the ground state evolves from an insulator into a superconductor, and eventually into a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier concentrations (p). The planar resistivity of this unconventional metal exhibits a linear temperature dependence (\rho \propto T) that is disrupted upon cooling toward the superconducting state by the opening of a partial gap (the pseudogap) on the Fermi surface. Here we first demonstrate for the quintessential compound HgBa2_2CuO4+δ_{4+\delta} a dramatic switch from linear to purely quadratic (Fermi-liquid-like, \rho \propto T2^2) resistive behavior in the pseudogap regime. Despite the considerable variation in crystal structures and disorder among different compounds, our result together with prior work gives new insight into the p-T phase diagram and reveals the fundamental resistance per copper-oxygen sheet in both linear (\rho_S = A_{1S} T) and quadratic (\rho_S = A_{2S} T2^2) regimes, with A_{1S} \propto A_{2S} \propto 1/p. Theoretical models can now be benchmarked against this remarkably simple universal behavior. Deviations from this underlying behavior can be expected to lead to new insights into the non-universal features exhibited by certain compounds

    An Empirical Explanation of the Anomalous Increases in the Astronomical Unit and the Lunar Eccentricity

    Full text link
    Both the recently reported anomalous secular increase of the astronomical unit, of the order of a few cm yr^-1, and of the eccentricity of the lunar orbit e_ = (9+/-3) 10^-12 yr^-1 can be phenomenologically explained by postulating that the acceleration of a test particle orbiting a central body, in addition to usual Newtonian component, contains a small additional radial term proportional to the radial projection vr of the velocity of the particle's orbital motion. Indeed, it induces secular variations of both the semi-major axis a and the eccentricity e of the test particle's orbit. In the case of the Earth and the Moon, they numerically agree rather well with the measured anomalies if one takes the numerical value of the coefficient of proportionality of the extra-acceleration approximately equal to that of the Hubble parameter H0 = 7.3 10^-11 yr^-1.Comment: Latex2e, no figures, no tables, 9 pages, 51 references. Published in The Astronomical Journal (AJ

    Functional Analysis of a Juvenile Hormone Inducible Transcription Factor, Krüppel homolog 1, in the Bean Bug, Riptortus pedestris

    Get PDF
    Juvenile hormone (JH) has two major functions in insects, i.e., suppression of metamorphosis in the larval or nymphal stage and promotion of reproduction in the adult stage. Krüppel homolog 1 (Kr-h1), a C2H2 zinc-finger type transcription factor, is reported to act downstream of the JH receptor complex. In the present study, the function of Kr-h1 was examined in adults and nymphs of Riptortus pedestris by RNA interference (RNAi). After injection of adults with dsRNA of Kr-h1, the expression level of Kr-h1 was significantly decreased in the abdomen. Kr-h1 dsRNA-injection resulted in a lower proportion of individuals with developed ovaries, but the difference was not statistically significant. The transcript levels of cyanoprotein-α and vitellogenin-1, which are JH-inducible genes encoding yolk proteins, were not affected in the abdomen by Kr-h1 knockdown. Kr-h1 dsRNA-injection was effective for suppression of Kr-h1 expression in nymphs. Some Kr-h1 dsRNA-injected fifth (final) instar nymphs had morphological defects in the wing bud. Moreover, they had several adult morphological features, including ocelli in the head, connexivum in the abdomen, coloring of the dorsal abdomen, and genitals. The nymphs possessing adult features did not emerge as adults during 1 month. These results demonstrated that Kr-h1 is necessary for maintaining nymphal characters in R. pedestris. The function of Kr-h1 in ovarian development remains unclear in R. pedestris
    corecore