350 research outputs found

    Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting.

    Get PDF
    Enhanced plasmonic fields are a promising way to increase the efficiency of photocatalytic water splitting. The availability of atomically thin materials opens up completely new opportunities. We report photocatalytic water splitting on ultrathin CdSe nanoplatelets placed in plasmonic nanogaps formed by a flat gold surface and a gold nanoparticle. The extreme field intensity created in these gaps increases the electron–hole pair production in the CdSe nanoplatelets and enhances the plasmon-mediated interfacial electron transfer. Compared to individual nanoparticles commonly used to enhance photocatalytic processes, gap-plasmons produce several orders of magnitude higher field enhancement, strongly localized inside the semiconductor sheet thus utilizing the entire photocatalyst efficiently.This work was supported by the U.K. EPSRC grant EP/G060649/1 and EPSRC grant EP/L027151/1, Defence Science and Technology Laboratory (DSTL), a Marie Curie Intra-European Fellowship (FP7-PEOPLE-2011-IEF 298012 to L.Z.) and ERC grant 320503 LINASS.This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acs.jpclett.5b0027

    Halide Ligands to Release Strain in Cadmium Chalcogenide Nanoplatelets and Achieve High Brightness

    Get PDF
    International audienceZinc blende II-VI semiconductor nanoplatelets (NPLs) are defined at the atomic scale along the thickness of the nanoparticle and are initially capped with carboxylates on the top and bottom [001] facets. These ligands are exchanged on CdSe NPLs with halides that act as X-L-type ligands. These CdSe NPLs are costabilized by amines to provide colloidal stability in nonpolar solvents. The hydrogen from the amine can participate in a hydrogen bond with the lone pair electrons of surface halides. After ligand exchange, the optical features are redshifted. Thus, ligand tuning is another way, in addition to confinement, to tune the optical features of NPLs. The improved surface passivation leads to an increase in the fluorescence quantum efficiency of up to 70% in the case of bromide. However, for chloride and iodide, the surface coverage is incomplete, and thus, the fluorescence quantum efficiency is lower. This ligand exchange is associated with a decrease in stress that leads to unfolding of the NPLs, which is particularly noticeable for iodide-capped NPLs

    Ligand exchange on CdSe nanoplatelets for the solar light sensitization of TiO2 and ZnO nanorod arrays

    Get PDF
    In quantum dot (QD) solar cells, the ex situ sensitization of wide band gap semiconductors (WBSCs) makes it possible to control the shape and the passivation of the nanosized sensitizer. Hence, ex situ techniques can be used to investigate how the band gap of the sensitizers affects the performance of quantum dot solar cells. The latter can be precisely controlled in 1D confined structures such as quasi-2D nanoplatelets (NPLs), the thickness of which is defined with an atomic precision. In this work, we tested and thoroughly characterized the attachment of 7, 9 and 11 monolayers thick CdSe NPLs (as well as QDs for the sake of comparison) to ZnO and to TiO2 nanorods. A crucial point of the ex situ techniques is the choice of bifunctional ligands that link the nanosized sensitizers to the WBSCs. Besides the well-known mercaptopropionic acid, we also studied two ‘atomic linkers’ (OH− and SH−) to minimize the distance between the sensitizer and the oxide. The as-prepared systems have been analyzed by UV/VIS absorption and Raman spectroscopy. Among them, SH− was found to be the most versatile linker that enabled the efficient attachment of all types of CdSe nanocrystals on ZnO and TiO2 nanorods.Fil: Szemjonov, A.. PSL Research University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Tasso, Mariana Patricia. Laboratoire de Physique Et D'etude Des Materiaux; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones FisicoquĂ­micas TeĂłricas y Aplicadas; ArgentinaFil: Ithurria, S.. Laboratoire de Physique Et D'etude Des Materiaux; FranciaFil: Ciofini, I.. PSL Research University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Labat, F.. PSL Research University; Francia. Centre National de la Recherche Scientifique; FranciaFil: PauportĂ©, T.. PSL Research University; Francia. Centre National de la Recherche Scientifique; Franci

    CdSe/CdS dot-in-rods nanocrystals fast blinking dynamics

    Full text link
    The blinking dynamics of colloidal core-shell CdSe/CdS dot-in-rods is studied in detail at the single particle level. Analyzing the autocorrelation function of the fluorescence intensity, we demonstrate that these nanoemitters are characterized by a short value of the mean duration of bright periods (ten to a few hundreds of microseconds). The comparison of the results obtained for samples with different geometries shows that not only the shell thickness is crucial but also the shape of the dot- in-rods. Increasing the shell aspect ratio results in shorter bright periods suggesting that surface traps impact the stability of the fluorescence intensity

    Tight-binding calculations of image charge effects in colloidal nanoscale platelets of CdSe

    Get PDF
    International audienceCdSe nanoplatelets show perfectly quantized thicknesses of few monolayers. They present a situation of extreme, yet well de ned quantum con nement. Due to large dielectric contrast between the semiconductor and its ligand environment, interaction between carriers and their dielectric images strongly renormalize bare single particle states. We discuss the electronic properties of this original system in an advanced tight-binding model, and show that Coulomb interactions, including self-energy corrections and enhanced electron-hole interaction, lead to exciton binding energies up to several hundred meVs

    Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities.

    Get PDF
    Nanometer-sized gaps between plasmonically coupled adjacent metal nanoparticles enclose extremely localized optical fields, which are strongly enhanced. This enables the dynamic investigation of nanoscopic amounts of material in the gap using optical interrogation. Here we use impinging light to directly tune the optical resonances inside the plasmonic nanocavity formed between single gold nanoparticles and a gold surface, filled with only yoctograms of semiconductor. The gold faces are separated by either monolayers of molybdenum disulfide (MoS2) or two-unit-cell thick cadmium selenide (CdSe) nanoplatelets. This extreme confinement produces modes with 100-fold compressed wavelength, which are exquisitely sensitive to morphology. Infrared scattering spectroscopy reveals how such nanoparticle-on-mirror modes directly trace atomic-scale changes in real time. Instabilities observed in the facets are crucial for applications such as heat-assisted magnetic recording that demand long-lifetime nanoscale plasmonic structures, but the spectral sensitivity also allows directly tracking photochemical reactions in these 2-dimensional solids.This work was supported by the UK EPSRC grant EP/G060649/1, Defence Science and Technology Laboratory (DSTL), and ERC grant 320503 LINASS.This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/nn5064198

    Field effect transistor and photo transistor of narrow band gap nanocrystal arrays using ionic glasses

    Get PDF
    International audienceGating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolyte, thanks to a large capacitance, leads to significantly reduce operating bias but is limited to slow speed and quasi room temperature operation. None of these operating conditions are optimal for narrow band gap nanocrystal-based phototransistors for which the need of a large capacitance gate has to be combined with low temperature operation. Here we explore the use of a LaF3 ionic glass as a high capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 ”F·cm-2. We unveil the unique property of ionic glass gate to enable unprecedented tunability of both magnitude and dynamics of the photocurrent, thanks to high charge doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal to noise ratio can be improved by a factor 100 and the time response accelerated by a factor 6. Moreover, the good transparency of LaF3 substrate allows back side illumination in the infrared which is highly valuable for the design of phototransistor

    Vertical Cavity Biexciton Lasing in 2D Dodecylammonium Lead Iodide Perovskites

    Get PDF
    Layered Ruddlesden-Popper-type (2D) metal-halide perovskites exhibit markedly increased exciton binding energies, exceeding 150 meV, compared to their 3D counterparts. Many-body physics, enabled by Coulomb interactions, play a strong role and raises the biexciton binding energy to 50 meV. We report photoluminescence at a range of temperatures and carrier concentrations in thin films of the layered perovskite material (C12H25NH3)2PbI4. We directly observe biexcitons up to a sample temperature of 225 K. We construct an optical microcavity (comprising a distributed Bragg reflector and a metal mirror), with photonic resonances tuned near to the biexciton energy. We observe optically-pumped biexciton lasing up to 125 K, with a threshold peak excitation density of 5.6 × 1018 cm-3. The demonstration of biexciton lasing above liquid nitrogen temperatures is a crucial step for the application of layered perovskites in photonic applications
    • 

    corecore