332 research outputs found

    The antioxidant role of vitamin E in polyolefins

    Get PDF
    Polymers are subject to oxidation throughout their lifecycle. Antioxidants are generally incorporated in polymers to inhibit or minimise oxidative degradation. Hindered phenolic antioxidants are important stabilisers for polyolefins. However, hindered phenols undergo chemical transformations while performing their antioxidant function during processing and fabrication. In addition, antioxidants are subject to loss from polymers during processing, or subsequently in-service. Migration of antioxidants is a major concern in applications involving polymers in direct contact with food and human environment. This concern is compounded by the realisation that very little is known about the nature and the migration behaviour of antioxidant transformation products. In this work, the antioxidant role of the biological antioxidant -tocopherol (Vitamin E) , which is structurally similar to many synthetic hindered phenols, is investigated in low density polyethylene (LDPE) and polypropylene (PP). The melt stabilising effectiveness of -tocopherol (Toc) was found to be very high, higher than that of commercial hindered phenol antioxidants, such as Irganox 1076 (Irg 1076) and Irganox 1010 (Irg 1010), after multiple extrusions, especially at very low concentrations. The high antioxidant activity of Toc was shown to be due, at least in part, to the formation of transformation products during processing. The main products formed are stereoisomers of dimers and trimers, as well as aldehydes and a quinone - the relative concentration of each was shown to depend on the processing severity, the initial antioxidant concentration and oxygen availability. These transformation products are shown to impart better, similar or lower melt stability to the polymer than the parent antioxidant. The nature of the products formed from Toc during processing was compared with those formed during processing of Irg 1076 and Irg 1010 with LDPE and a mechanism for the melt stabilisation of Toc was proposed and compared with the stabilisation mechanisms of the synthetic antioxidants Irg 1076 and Irg 1010

    Virulent Clones of Klebsiella pneumoniae: Identification and Evolutionary Scenario Based on Genomic and Phenotypic Characterization

    Get PDF
    Klebsiella pneumoniae is found in the environment and as a harmless commensal, but is also a frequent nosocomial pathogen (causing urinary, respiratory and blood infections) and the agent of specific human infections including Friedländer's pneumonia, rhinoscleroma and the emerging disease pyogenic liver abscess (PLA). The identification and precise definition of virulent clones, i.e. groups of strains with a single ancestor that are associated with particular infections, is critical to understand the evolution of pathogenicity from commensalism and for a better control of infections. We analyzed 235 K. pneumoniae isolates of diverse environmental and clinical origins by multilocus sequence typing, virulence gene content, biochemical and capsular profiling and virulence to mice. Phylogenetic analysis of housekeeping genes clearly defined clones that differ sharply by their clinical source and biological features. First, two clones comprising isolates of capsular type K1, clone CC23K1 and clone CC82K1, were strongly associated with PLA and respiratory infection, respectively. Second, only one of the two major disclosed K2 clones was highly virulent to mice. Third, strains associated with the human infections ozena and rhinoscleroma each corresponded to one monomorphic clone. Therefore, K. pneumoniae subsp. ozaenae and K. pneumoniae subsp. rhinoscleromatis should be regarded as virulent clones derived from K. pneumoniae. The lack of strict association of virulent capsular types with clones was explained by horizontal transfer of the cps operon, responsible for the synthesis of the capsular polysaccharide. Finally, the reduction of metabolic versatility observed in clones Rhinoscleromatis, Ozaenae and CC82K1 indicates an evolutionary process of specialization to a pathogenic lifestyle. In contrast, clone CC23K1 remains metabolically versatile, suggesting recent acquisition of invasive potential. In conclusion, our results reveal the existence of important virulent clones associated with specific infections and provide an evolutionary framework for research into the links between clones, virulence and other genomic features in K. pneumoniae

    The speciation and hybridization history of the genus Salmonella.

    Get PDF
    Bacteria and archaea make up most of natural diversity, but the mechanisms that underlie the origin and maintenance of prokaryotic species are poorly understood. We investigated the speciation history of the genus Salmonella, an ecologically diverse bacterial lineage, within which S. enterica subsp. enterica is responsible for important human food-borne infections. We performed a survey of diversity across a large reference collection using multilocus sequence typing, followed by genome sequencing of distinct lineages. We identified 11 distinct phylogroups, 3 of which were previously undescribed. Strains assigned to S. enterica subsp. salamae are polyphyletic, with two distinct lineages that we designate Salamae A and B. Strains of the subspecies houtenae are subdivided into two groups, Houtenae A and B, and are both related to Selander's group VII. A phylogroup we designate VIII was previously unknown. A simple binary fission model of speciation cannot explain observed patterns of sequence diversity. In the recent past, there have been large-scale hybridization events involving an unsampled ancestral lineage and three distantly related lineages of the genus that have given rise to Houtenae A, Houtenae B and VII. We found no evidence for ongoing hybridization in the other eight lineages, but detected subtler signals of ancient recombination events. We are unable to fully resolve the speciation history of the genus, which might have involved additional speciation-by-hybridization or multi-way speciation events. Our results imply that traditional models of speciation by binary fission and divergence are not sufficient to account for Salmonella evolution

    Acetylation of surface carbohydrates in bacterial pathogens requires coordinated action of a two-domain membrane-bound acyltransferase

    Get PDF
    Membrane bound acyltransferase-3 (AT3) domain-containing proteins are implicated in a wide range of carbohydrate O-acyl modifications, but their mechanism of action is largely unknown. O-antigen acetylation by AT3 domain-containing acetyltransferases of Salmonella spp. can generate a specific immune response upon infection and can influence bacteriophage interactions. This study integrates in situ and in vitro functional analyses of two of these proteins, OafA and OafB (formerly F2GtrC), which display an "AT3-SGNH fused" domain architecture, where an integral membrane AT3 domain is fused to an extracytoplasmic SGNH domain. An in silico-inspired mutagenesis approach of the AT3 domain identified seven residues which are fundamental for the mechanism of action of OafA, with a particularly conserved motif in TMH1 indicating a potential acyl donor interaction site. Genetic and in vitro evidence demonstrate that the SGNH domain is both necessary and sufficient for lipopolysaccharide acetylation. The structure of the periplasmic SGNH domain of OafB identified features not previously reported for SGNH proteins. In particular, the periplasmic portion of the interdomain linking region is structured. Significantly, this region constrains acceptor substrate specificity, apparently by limiting access to the active site. Coevolution analysis of the two domains suggests possible interdomain interactions. Combining these data, we propose a refined model of the AT3-SGNH proteins, with structurally constrained orientations of the two domains. These findings enhance our understanding of how cells can transfer acyl groups from the cytoplasm to specific extracellular carbohydrates.IMPORTANCE Acyltransferase-3 (AT3) domain-containing membrane proteins are involved in O-acetylation of a diverse range of carbohydrates across all domains of life. In bacteria they are essential in processes including symbiosis, resistance to antimicrobials, and biosynthesis of antibiotics. Their mechanism of action, however, is poorly characterized. We analyzed two acetyltransferases as models for this important family of membrane proteins, which modify carbohydrates on the surface of the pathogen Salmonella enterica, affecting immunogenicity, virulence, and bacteriophage resistance. We show that when these AT3 domains are fused to a periplasmic partner domain, both domains are required for substrate acetylation. The data show conserved elements in the AT3 domain and unique structural features of the periplasmic domain. Our data provide a working model to probe the mechanism and function of the diverse and important members of the widespread AT3 protein family, which are required for biologically significant modifications of cell-surface carbohydrates

    CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections

    Get PDF
    Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool
    • …
    corecore