75 research outputs found
Social Defeat Stress Decreases mRNA for Monoamine Oxidase A and Increases 5-HT Turnover in the Brain of Male Nile Tilapia (Oreochromis niloticus)
Stress induces various neurobiological responses and causes psychiatric disorders, including depression. Monoamine oxidase A (MAO-A) plays an important role in various functions of the brain, such as regulation of mood, anxiety and aggression, and dysregulation of MAO-A is observed in stress-related psychiatric disorders. This study addressed the question whether acute social stress induces changes to transcriptional and/or post-transcriptional regulation of MAO-A expression in the brain. Using male Nile tilapia (Oreochromis niloticus), we investigated whether acute social stress, induced by the presence of a dominant male fish, changes the expression of MAO-A. We measured gene expression of MAO-A by quantitative PCR, enzymatic activity of MAO-A by the luminescent method, and 5-HT and 5-HIAA levels by liquid chromatography–mass spectrometry in the brain of socially stressed and control fish. Socially stressed males showed decreased MAO-A mRNA levels, consistent MAO-A enzymatic activity, increased 5-HT turnover in the brain, and elevated plasma cortisol levels, compared to controls. Our results suggest that acute social stress suppresses the transcription of MAO-A gene, enhances 5-HT metabolism but does not affect the production of MAO-A protein
Expression of RING Finger Protein 38 in Serotonergic Neurons in the Brain of Nile Tilapia, Oreochromis niloticus
Serotonin (5-hydroxytryptamine, 5-HT) is one of the major neurotransmitters, modulating diverse behaviours and physiological functions. Really interesting new gene (RING) finger protein 38 (RNF38) is an E3 ubiquitin ligase whose function remains unclear. A recent study has shown a possible regulatory relationship between RNF38 and the 5-HT system. Therefore, to gain insight into the role of RNF38 in the central 5-HT system, we identified the neuroanatomical location of 5-HT positive cells and investigated the relationship between RNF38 and the 5-HT system in the brain of the Nile tilapia, Oreochromis niloticus. Immunocytochemistry revealed three neuronal populations of 5-HT in the brain of tilapia; the paraventricular organ (PVO), the dorsal and ventral periventricular pretectal nuclei (PPd and PPv), and, the superior and inferior raphe (SR and IR). The 5-HT neuronal number was highest in the raphe (90.4 in SR, 284.6 in IR), followed by the pretectal area (22.3 in PPd, 209.8 in PPv). Double-label immunocytochemistry showed that the majority of 5-HT neurons express RNF38 nuclear proteins (66.5% in PPd; 77.9% in PPv; 35.7% in SR; 49.1% in IR). These findings suggest that RNF38 could be involved in E3 ubiquitination in the central 5-HT system
Seasonal expression and distribution of kisspeptin1 (kiss1) in the ovary and testis of freshwater catfish, Clarias batrachus : a putative role in steroidogenesis
The central role of kisspeptin (kiss) in mammalian reproduction is well established; however, its intra-gonadal role is poorly addressed. Moreover, studies investigating intra-gonadal role of kiss in fish reproduction are scanty, contradictory and inconclusive. The expression of kiss1 mRNA has been detected in the fish brain, and functionally attributed to the regulation of reproduction, feeding and behavior. The kiss1 mRNA has also been demonstrated in tissues other than the brain in some studies, but its cellular distribution and role at the tissue level have not been adequately addressed in fish. Therefore, an attempt was made in the present study to localize kiss1 in gonadal cells of the freshwater catfish, Clarias batrachus. This study reports the presence of kiss1 in the theca cells and granulosa cells of the ovarian oocytes and interstitial cells in the testis of the catfish. The role of kiss1 in the ovary and testis of the catfish was also investigated using kiss1 receptor (kiss1r) antagonist (p234). The p234 treatment decreased the production of 17β-estradiol in ovary and testosterone in the testis by lowering the activities of 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase under both, in vivo as well as in vitro conditions. The p234 treatment also arrested the progression of oogenesis, as evident from the low number of advancing/advanced oocytes in the treated ovary in comparison to the control ovary. It also reduced the area and perimeter of the seminiferous tubules in the treated catfish testis. Thus, our findings suggest that kiss is involved in the regulation of gonadal steroidogenesis, independent of known endocrine/ autocrine/ paracine regulators, and thereby it accelerates gametogenic processes in the freshwater catfish.The Center of Advanced Study Program phase V of the University Grants Commission (UGC), New Delhi, India and UGC, New Delhi, India.https://www.elsevier.com/locate/acthis2022-08-09hj2022Immunolog
Role of Neurokinin B in gametogenesis and steroidogenesis of freshwater catfish, Clarias batrachus
DATA AVAILABILITY : The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.Neurokinin B (NKB), a recently discovered neuropeptide, plays a crucial role in regulating the kiss-GnRH neurons in vertebrate's brain. NKB is also characterized in gonadal tissues; however, its role in gonads is poorly understood. Therefore, in the present study, the effects of NKB on gonadal steroidogenesis and gametogenesis through in vivo and in vitro approaches using NKB antagonist MRK-08 were evaluated. The results suggest that the NKB antagonist decreases the development of advanced ovarian follicles and germ cells in the testis. In addition, MRK-08 further reduces the production of 17β-estradiol in the ovary and testosterone in the testis under both in vivo and in vitro conditions in a dose-dependent manner. Furthermore, the in vitro MRK-08 treatment of gonadal explants attenuated the expression of steroidogenic marker proteins, i.e., StAR, 3β-HSD, and 17β-HSD dose-dependently. Moreover, the MAP kinase proteins, pERK1/2 & ERK1/2 and pAkt & Akt were also downregulated by MRK-08. Thus, the study suggests that NKB downregulates steroidogenesis by modulating the expressions of steroidogenic marker proteins involving ERK1/2 & pERK1/2 and Akt/pAkt signalling pathways. NKB also appears to regulate gametogenesis by regulating gonadal steroidogenesis in the catfish.The Center of Advanced Study Program Phase VI of the University Grants Commission (UGC), New Delhi, Government of India, to the Department of Zoology, Banaras Hindu University, India.https://link.springer.com/journal/4412024-06-06hj2024ImmunologySDG-03:Good heatlh and well-bein
Murine in vitro cellular models to better understand adipogenesis and its potential applications
Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology
Single-cell gene profiling reveals social status-dependent modulation of nuclear hormone receptors in gnrh neurons in a male cichlid fish
Gonadotropin-releasing hormone (GnRH) is essential for the initiation and maintenance of reproductive functions in vertebrates. To date, three distinct paralogue lineages, GnRH1, GnRH2, and GnRH3, have been identified with different functions and regulatory mechanisms. Among them, hypothalamic GnRH1 neurons are classically known as the hypophysiotropic form that is regulated by estrogen feedback. However, the mechanism of action underlying the estrogen-dependent regulation of GnRH1 has been debated, mainly due to the coexpression of low levels of estrogen receptor (ER) genes. In addition, the role of sex steroids in the modulation of GnRH2 and GnRH3 neurons has not been fully elucidated. Using single-cell real-time PCR, we revealed the expression of genes for estrogen, androgen, glucocorticoid, thyroid, and xenobiotic receptors in GnRH1, GnRH2, and GnRH3 neurons in the male Nile tilapia Oreochromis niloticus. We further quantified expression levels of estrogen receptor genes (ERα, ERβ, and ERγ) in three GnRH neuron types in male tilapia of two different social statuses (dominant and subordinate) at the single cell level. In dominant males, GnRH1 mRNA levels were positively proportional to ERγ mRNA levels, while in subordinate males, GnRH2 mRNA levels were positively proportional to ERβ mRNA levels. These results indicate that variations in the expression of nuclear receptors (and possibly steroid sensitivities) among individual GnRH cells may facilitate different physiological processes, such as the promotion of reproductive activities through GnRH1 neurons, and the inhibition of feeding and sexual behaviors through GnRH2 neurons
Role of habenula in social and reproductive behaviors in fish:comparison with mammals
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN
Biological Significance of Kisspeptin–Kiss 1 Receptor Signaling in the Habenula of Teleost Species
Kisspeptin is a neuropeptide, encoded by kisspeptin 1 (KISS1)/Kiss1 gene, which primarily acts as the regulator of reproductive functions via its receptor, kisspeptin receptor (KissR) in vertebrates. In the brain, Kiss1 gene is mainly expressed in the hypothalamic region, but KissR gene is widely distributed throughout the brain, suggesting that kisspeptin–KissR system may be involved in not only reproductive, but also non-reproductive functions. In non-mammalian vertebrates, there are two or more kisspeptin and KissR types. The zebrafish (Danio rerio) possess two kisspeptin (Kiss1 and Kiss2) and their respective receptors [Kiss1 receptor (KissR1) and KissR2]. In the brain of zebrafish, while Kiss2 is expressed in the preoptic-hypothalamic area, Kiss1 is predominantly expressed in the habenula, an evolutionarily conserved epithalamic structure. Similarly, KissR1 is expressed only in the habenula, while KissR2 is widely distributed in the brain, suggesting that the two kisspeptin systems play specific roles in the brain. The habenular Kiss1 is involved in the modulation of the raphe nuclei and serotonin-related behaviors such as fear response in the zebrafish. This review summarizes the roles of multiple kisspeptin–KissR systems in reproductive and non-reproductive functions and neuronal mechanism, and debates the biological and evolutional significance of habenular kisspeptin–KissR systems in teleost species
Reproductive neuroendocrine pathways of social behavior
Social behaviors are key components of reproduction because they are essential for successful fertilization. Social behaviors such as courtship, mating, and aggression are strongly associated with sex steroids, such as testosterone, estradiol and progesterone. Secretion of sex steroids from the gonads is regulated by the hypothalamus-pituitary-gonadal (HPG) axis in vertebrates. Gonadotropin-releasing hormone (GnRH) is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide peptides) has been emphasized in vertebrate reproduction. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH), emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin stimulates GnRH release by directly acting on GnRH neurons, whereas GnIH inhibits gonadotropin release by inhibiting kisspeptin or GnRH neurons or pituitary gonadotropes. These neuropeptides can regulate social behavior by regulating the HPG axis. However, distribution of neuronal fibers of GnRH, kisspeptin and GnIH neurons are not limited within the hypothalamus, and the existence of extra-hypothalamic neuronal fibers suggests direct control of social behavior within the brain. It has traditionally been shown that central administration of GnRH can stimulate female sexual behavior in rats. Recently, it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear responses in zebrafish and GnIH inhibits socio-sexual behavior in birds. Here we highlight recent findings regarding the role of GnRH, kisspeptin and GnIH in the regulation of social behaviors in fish, birds and mammals and discuss their importance in future biological and biomedical research
- …