10 research outputs found

    Nutrient sensing modulates malaria parasite virulence

    Get PDF
    The lifestyle of intracellular pathogens, such as malaria parasites, is intimately connected to that of their host, primarily for nutrient supply. Nutrients act not only as primary sources of energy but also as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions. Canonical nutrient-sensing pathways are presumed to be absent from the causative agent of malaria, Plasmodium, thus raising the question of whether these parasites can sense and cope with fluctuations in host nutrient levels. Here we show that Plasmodium blood-stage parasites actively respond to host dietary calorie alterations through rearrangement of their transcriptome accompanied by substantial adjustment of their multiplication rate. A kinome analysis combined with chemical and genetic approaches identified KIN as a critical regulator that mediates sensing of nutrients and controls a transcriptional response to the host nutritional status. KIN shares homology with SNF1/AMPKα, and yeast complementation studies suggest that it is part of a functionally conserved cellular energy-sensing pathway. Overall, these findings reveal a key parasite nutrient-sensing mechanism that is critical for modulating parasite replication and virulence

    Plasmodium Protease ROM1 Is Important for Proper Formation of the Parasitophorous Vacuole

    Get PDF
    Apicomplexans are obligate intracellular parasites that invade host cells by an active process leading to the formation of a non-fusogenic parasitophorous vacuole (PV) where the parasite replicates within the host cell. The rhomboid family of proteases cleaves substrates within their transmembrane domains and has been implicated in the invasion process. Although its exact function is unknown, Plasmodium ROM1 is hypothesized to play a role during invasion based on its microneme localization and its ability to cleave essential invasion adhesins. Using the rodent malaria model, Plasmodium yoelii, we carried out detailed quantitative analysis of pyrom1 deficient parasites during the Plasmodium lifecycle. Pyrom1(-) parasites are attenuated during erythrocytic and hepatic stages but progress normally through the mosquito vector with normal counts of oocyst and salivary gland sporozoites. Pyrom1 steady state mRNA levels are upregulated 20-fold in salivary gland sporozoites compared to blood stages. We show that pyrom1(-) sporozoites are capable of gliding motility and traversing host cells normally. Wildtype and pyrom1(-) sporozoites do not differ in the rate of entry into Hepa1–6 hepatocytes. Within the first twelve hours of hepatic development, however, only 50% pyrom1(-) parasites have developed into exoerythrocytic forms. Immunofluorescence microscopy using the PVM marker UIS4 and transmission electron microscopy reveal that the PV of a significant fraction of pyrom1(-) parasites are morphologically aberrant shortly after invasion. We propose a novel function for PyROM1 as a protease that promotes proper PV modification to allow parasite development and replication in a suitable environment within the mammalian host

    Targeting liver stage malaria with metformin

    No full text
    Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention

    Host AMPK Is a Modulator of Plasmodium Liver Infection

    Get PDF
    Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK) activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions

    On Cartan matrices with two parameters (Cohomology theory of finite groups and related topics)

    Get PDF
    A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts

    Malaria Box Heatmap.

    No full text
    <p>Shown are selected data from the HeatMap (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s002" target="_blank">S1 Table</a>) for the 400 Malaria Box compounds. Each column represents an assay (grouped by category), compounds are represented in rows. The red-green gradient represents higher to lower activity. Favorable PK activities are scored green. <i>Pf</i>: <i>Plasmodium falciparum</i>, <i>Pb</i>: <i>Plasmodium berghei</i>, PK: pharmacokinetics, sol.: solubility, hERG: human ether-a-go-go channel inhibition, DDI: drug-drug interactions (predicted).</p

    Antiprotozoal Malaria Box compounds with activity in biological assays and lacking toxicity at therapeutic levels.

    No full text
    <p>Selectivity Index, SI, is toxicity level/activity level; p, probe-like; d, drug-like.</p

    Metabolomic and chemogenomic profiling.

    No full text
    <p>(A) Metabolic profiling: Heat map showing metabolic fingerprints of 80 Malaria Box compounds and atovaquone control. Parasite extracts were analyzed by LC-MS, and changes in metabolite pools were calculated for drug-treated parasites as compared to untreated controls. Hierarchical clustering was performed on <sup>2</sup>log-fold changes in metabolites (data in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s003" target="_blank">S2 Table</a>), scaled from -3 to +3. Six of seven compounds (indicated in red) reported to target <i>Pf</i>ATP4 [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.ref025" target="_blank">25</a>] showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived peptides. A large cluster of compounds (indicated in blue) clustered with the atovaquone control (indicated in orange), and exhibit an atovaquone-like signature characterized by dysregulation of pyrimidine biosynthesis, and showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived peptides. (B) Chemogenomic profiling: A collection of 35 <i>P</i>. <i>falciparum</i> single insertion <i>piggyBac</i> mutants were profiled with 53 MMV compounds and 3 artemisinin (ART) compounds [Artesunate (AS), Artelinic acid (AL) and Artemether (AM)] for changes in IC<sub>50</sub> relative to the wild-type parent NF54 (data in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s004" target="_blank">S3 Table</a>, genes queried in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s005" target="_blank">S4 Table</a>). Clone PB58 carried a <i>piggyBac</i> insertion in the promoter region of the K13 gene and has an increased sensitivity to ART compounds as do PB54 and PB55 [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.ref033" target="_blank">33</a>]. Drug-drug relationships based on similarities in IC<sub>50</sub> deviations of compounds generated with <i>piggyBac</i> mutants created chemogenomic profiles used to define drug-drug relationships. The significance of similarity in MoA between Malaria Box compounds and ART was evaluated by Pearson’s correlation calculations from pairwise comparisons. The X axis shows the chemogenomic profile correlation between a Malaria Box compound and AS, the Y axis with AM; the color gradient indicates the average correlation with all ART derivatives tested. Five Malaria Box compounds (MMV006087, MMV006427, MMV020492, MMV665876, MMV396797) were identified as having similar drug-drug chemogenomic profiles to the ART sensitivity cluster.</p
    corecore