386 research outputs found
Axions and the pulsation periods of variable white dwarfs revisited
Axions are the natural consequence of the introduction of the Peccei-Quinn
symmetry to solve the strong CP problem. All the efforts to detect such elusive
particles have failed up to now. Nevertheless, it has been recently shown that
the luminosity function of white dwarfs is best fitted if axions with a mass of
a few meV are included in the evolutionary calculations. Our aim is to show
that variable white dwarfs can provide additional and independent evidence
about the existence of axions. The evolution of a white dwarf is a slow cooling
process that translates into a secular increase of the pulsation periods of
some variable white dwarfs, the so-called DAV and DBV types. Since axions can
freely escape from such stars, their existence would increase the cooling rate
and, consequently, the rate of change of the periods as compared with the
standard ones. The present values of the rate of change of the pulsation period
of G117-B15A are compatible with the existence of axions with the masses
suggested by the luminosity function of white dwarfs, in contrast with previous
estimations. Furthermore, it is shown that if such axions indeed exist, the
drift of the periods of pulsation of DBV stars would be noticeably perturbed.Comment: Accepted for publication in Astronomy & Astrophysic
Gravitational settling of 22Ne and white dwarf evolution
We study the effects of the sedimentation of the trace element 22Ne in the
cooling of white dwarfs. In contrast with previous studies, which adopted a
simplified treatment of the effects of 22Ne sedimentation, this is done
self-consistently for the first time, using an up-to-date stellar evolutionary
code in which the diffusion equation is coupled with the full set of equations
of stellar evolution. Due the large neutron excess of 22Ne, this isotope
rapidly sediments in the interior of the white dwarf. Although we explore a
wide range of parameters, we find that using the most reasonable assumptions
concerning the diffusion coefficient and the physical state of the white dwarf
interior the delay introduced by the ensuing chemical differentation is minor
for a typical 0.6 Msun white dwarf. For more massive white dwarfs, say M_Wd
about 1.0 Msun, the delay turns out to be considerably larger. These results
are in qualitatively good accord with those obtained in previous studies, but
we find that the magnitude of the delay introduced by 22Ne sedimentation was
underestimated by a factor of about 2. We also perform a preliminary study of
the impact of 22Ne sedimentation on the white dwarf luminosity function.
Finally, we hypothesize as well on the possibility of detecting the
sedimentation of 22Ne using pulsating white dwarfs in the appropriate effective
temperature range with accurately determined rates of change of the observed
periods.Comment: To apper in The Astrophysical Journa
Evolution of white dwarf stars with high-metallicity progenitors: the role of 22Ne diffusion
Motivated by the strong discrepancy between the main sequence turn-off age
and the white dwarf cooling age in the metal-rich open cluster NGC 6791, we
compute a grid of white dwarf evolutionary sequences that incorporates for the
first time the energy released by the processes of 22Ne sedimentation and of
carbon/oxygen phase separation upon crystallization. The grid covers the mass
range from 0.52 to 1.0 Msun, and it is appropriate for the study of white
dwarfs in metal-rich clusters. The evolutionary calculations are based on a
detailed and self-consistent treatment of the energy released from these two
processes, as well as on the employment of realistic carbon/oxygen profiles, of
relevance for an accurate evaluation of the energy released by carbon/oxygen
phase separation. We find that 22Ne sedimentation strongly delays the cooling
rate of white dwarfs stemming from progenitors with high metallicities at
moderate luminosities, whilst carbon/oxygen phase separation adds considerable
delays at low luminosities. Cooling times are sensitive to possible
uncertainties in the actual value of the diffusion coefficient of 22Ne.
Changing the diffusion coefficient by a factor of 2, leads to maximum age
differences of approx. 8-20% depending on the stellar mass. We find that the
magnitude of the delays resulting from chemical changes in the core is
consistent with the slow down in the white dwarf cooling rate that is required
to solve the age discrepancy in NGC 6791.Comment: 10 pages, 6 figures, to be published in The Astrophysical Journa
The potential of the variable DA white dwarf G117-B15A as a tool for Fundamental Physics
White dwarfs are well studied objects. The relative simplicity of their
physics allows to obtain very detailed models which can be ultimately compared
with their observed properties. Among white dwarfs there is a specific class of
stars, known as ZZ-Ceti objects, which have a hydrogen-rich envelope and show
periodic variations in their light curves. G117-B15A belongs to this particular
set of stars. The luminosity variations have been successfully explained as due
to g-mode pulsations. G117-B15A has been recently claimed to be the most stable
optical clock ever found, being the rate of change of its 215.2 s period very
small: \dot{P}= (2.3 +- 1.4)x10^{-15} s s^-1, with a stability comparable to
that of the most stable millisecond pulsars. The rate of change of the period
is closely related to its cooling timescale, which can be accurately computed.
In this paper we study the pulsational properties of G117-B15A and we use the
observed rate of change of the period to impose constraints on the axion
emissivity and, thus, to obtain a preliminary upper bound to the mass of the
axion. This upper bound turns out to be 4cos^{2}{\beta} meV at the 95%
confidence level. Although there are still several observational and
theoretical uncertainties, we conclude that G117-B15A is a very promising
stellar object to set up constraints on particle physics.Comment: 32 pages, 14 figures, accepted for publication in New Astronom
New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution
Cool white dwarfs are reliable and independent stellar chronometers. The most
common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling
ages of very cool white dwarfs sensitively depend on the adopted phase diagram
of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen
mixtures appropriate for white dwarf interiors has been recently obtained using
direct molecular dynamics simulations. In this paper, we explore the
consequences of this phase diagram in the evolution of cool white dwarfs. To do
this we employ a detailed stellar evolutionary code and accurate initial white
dwarf configurations, derived from the full evolution of progenitor stars. We
use two different phase diagrams, that of Horowitz et al. (2010), which
presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993),
which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun
white dwarf models during the crystallization phase, and we found that the
energy released by carbon-oxygen phase separation is smaller when the new phase
diagram of Horowitz et al. (2010) is used. This translates into time delays
that are on average a factor about 2 smaller than those obtained when the phase
diagram of Segretain & Chabrier (1993) is employed. Our results have important
implications for white dwarf cosmochronology, because the cooling ages of very
old white dwarfs are different for the two phase diagrams. This may have a
noticeable impact on the age determinations of very old globular clusters, for
which the white dwarf color-magnitude diagram provides an independent way of
estimating their age.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and
Astrophysic
The rate of cooling of the pulsating white dwarf star G117B15A: a new asteroseismological inference of the axion mass
We employ a state-of-the-art asteroseismological model of G117-B15A, the
archetype of the H-rich atmosphere (DA) white dwarf pulsators (also known as
DAV or ZZ Ceti variables), and use the most recently measured value of the rate
of period change for the dominant mode of this pulsating star to derive a new
constraint on the mass of axion, the still conjectural non-barionic particle
considered as candidate for dark matter of the Universe. Assuming that
G117-B15A is truly represented by our asteroseismological model, and in
particular, that the period of the dominant mode is associated to a pulsation
g-mode trapped in the H envelope, we find strong indications of the existence
of extra cooling in this star, compatible with emission of axions of mass m_a
\cos^2 \beta = 17.4^{+2.3}_{-2.7} meV.Comment: 9 pages, 5 figures and 3 tables. Accepted for publication in MNRA
White dwarf constraints on a varying
A secular variation of modifies the structure and evolutionary time
scales of white dwarfs. Using an state-of-the-art stellar evolutionary code, an
up-to-date pulsational code, and a detailed population synthesis code we
demonstrate that the effects of a running are obvious both in the
properties of individual white dwarfs, and in those of the white dwarf
populations in clusters. Specifically, we show that the white dwarf
evolutionary sequences depend on both the value of , and on the value
of when the white dwarf was born. We show as well that the pulsational
properties of variable white dwarfs can be used to constrain .
Finally, we also show that the ensemble properties of of white dwarfs in
clusters can also be used to set upper bounds to . Precisely, the
tightest bound --- yr --- is obtained
studying the population of the old, metal-rich, well populated, open cluster
NGC 6791. Less stringent upper limits can be obtained comparing the theoretical
results obtained taking into account the effects of a running with the
measured rates of change of the periods of two well studied pulsating white
dwarfs, G117--B15A and R548. Using these white dwarfs we obtain yr, and
yr, respectively, which although less restrictive than the previous
bound, can be improved measuring the rate of change of the period of massive
white dwarfs.Comment: 6 pages, 3 figures. To be published in the proceedings of the
conference "Varying fundamental constants and dynamical dark energy" (8 - 13
July 2013, Sexten Center for Astrophysics
Classical Nucleation Theory of the One-Component Plasma
We investigate the crystallization rate of a one-component plasma (OCP) in
the context of classical nucleation theory. From our derivation of the free
energy of an arbitrary distribution of solid clusters embedded in a liquid
phase, we derive the steady-state nucleation rate of an OCP as a function of
the Coulomb coupling parameter. Our result for the rate is in accord with
recent molecular dynamics simulations, but it is greater than that of previous
analytical estimates by many orders of magnitude. Further molecular dynamics
simulations of the nucleation rate of a supercooled liquid OCP for several
values of the coupling parameter would clarify the physics of this process.Comment: 6 pages, 1 figure, accepted by PR
The white dwarf cooling sequence of NGC 6791: a unique tool for stellar evolution
NGC 6791 is a well-studied, metal-rich open cluster that is so close to us
that can be imaged down to luminosities fainter than that of the termination of
its white dwarf cooling sequence, thus allowing for an in-depth study of its
white dwarf population. We use a Monte Carlo simulator that employs up-to-date
evolutionary cooling sequences for white dwarfs with hydrogen-rich and
hydrogen-deficient atmospheres, with carbon-oxygen and helium cores. The
cooling sequences for carbon-oxygen cores account for the delays introduced by
both Ne^22 sedimentation in the liquid phase and by carbon-oxygen phase
separation upon crystallization. We do not find evidence for a substantial
fraction of helium-core white dwarfs, and hence our results support the
suggestion that the origin of the bright peak of the white dwarf luminosity
function can only be attributed to a population of unresolved binary white
dwarfs. Moreover, our results indicate that the number distribution of
secondary masses of the population of unresolved binaries has to increase with
increasing mass ratio between the secondary and primary components of the
progenitor system. We also find that the observed cooling sequence appears to
be able to constrain the presence of progenitor sub-populations with different
chemical compositions and the fraction of non-DA white dwarfs. Our simulations
place interesting constraints on important characteristics of the stellar
populations of NGC 6791. In particular, we find that the fraction of single
helium-core white dwarfs must be smaller than 5%, that a sub-population of
stars with zero metallicity must be <12%, while if the adopted metallicity of
the sub-population is solar the upper limit is ~8%. Finally, we also find that
the fraction of non-DA white dwarfs in this particular cluster is surprinsingly
small <6%.Comment: 9 pages, 14 figures, accepted for publication in Astronomy &
Astrophysic
Electromagnetic induction as a basis for soil salinity monitoring within a Mediterranean irrigation district
28 Pag., 4 Tabl., 9 Fig. The definitive version is available at: http://www.sciencedirect.com/science/journal/00221694Soil salinity encroachment is an increasing concern in many irrigated lands, because of the undesirable effects of soluble salts on agricultural production and on water quality. From this point of view, the design and management of irrigation districts can be evaluated by monitoring the soil salinity. There are few cases in the world where comparisons can be undertaken from ‘historic’ data sets for extents other than individual plots. We demonstrate a monitoring procedure using electromagnetic induction (EMI) survey in an irrigated district in Spain. This district is the only one having an established soil salinity baseline. The EMI data acquired at the same plots were converted to soil electrical conductivity by calibrating with augered soil samples. The presented calibrations improve the baseline for future comparisons and for the treatment and understanding of new acquisitions of field data in next surveys. A shortcoming inherent to destructive soil sampling is its potential for biasing effects on long-term monitoring of soil salinity by means of GPS or other means of accurate localization and relocalization of soil sampling, the herein called “localization paradox”, rarely treated in scientific papers. The localization paradox is relevant for any variable soil property requiring repeated sampling. This issue is discussed, and a way for its overcoming by using EMI readings displaced from the augering is presented. EMI needs calibration with a reduced number of soil samples analyzed in the lab. The adoption of our data treatment procedures will facilitate soil salinity monitoring.This article was completed thanks to the funds of the Spanish projects GALC-006-2008, PIE-CSIC 200840I246, and AGL2009-08931/AGR.Peer reviewe
- …