473 research outputs found

    Crystal-mush reactivation by magma recharge: Evidence from the Campanian Ignimbrite activity, Campi Flegrei volcanic field, Italy

    Get PDF
    International audienceProcesses of crystal-mush remobilization by mafic magma recharges are often related to the outpouring of largevolumes of silicic melt during caldera-forming eruptions. This occurred for the Campanian Ignimbrite (CI) erup-tion (Campi Flegrei, Italy), which produced a voluminous trachy-phonolitic ignimbrite in southern-central Italyabout 40 ka ago. We focussed on the proximal-CI deposits at San Martino that are composed of a main sequenceof early-erupted, crystal-poor units and a late-erupted (post-caldera collapse) crystal-rich Upper Pumice FlowUnit (UPFU). Detailed micro-analytical geochemical data were performed on glasses and crystals of pyroclastsfrom these deposits and coupled with Sr-Nd isotopic measurements on glasses. Results show that the CI eruptionwas fed by two distinct melts for the early-erupted units and the late UPFU, respectively. The glasses of the early-erupted units have negative Eu anomalies and show more evolved compositions and higher Nd isotope ratiosthan those of the UPFU, which have positive Eu/Eu*. The magmas of the early units formed the main volume oferuptible meltof the CI reservoir, and are interpretedashaving beenextractedfrom cumulate crystal-mushwith-out a vertical geochemical gradient within the magma reservoir. The data indicate that the generation of thedistinctive UPFU melts involved the injection of a new batch of mafic magma into the base of the CI reservoir.The mafic magma allowed heating and reactivation of the CI crystal-mush by melting of low-Or sanidines(+/−low-An plagioclases), leaving high-An plagioclases and high-Mg# clinopyroxenes as residual phases anda crystal-mush melt, made of 20% of the initial mush interstitial melt (with a composition similar to the early-erupted units) and 80% of sanidine melt. When the mush crystallinity was sufficiently reduced, the maficmagma was able to penetrate into the reactivated crystal-mush, mixing with variable proportions of crystal-mush melt and generating cooler hybrid melts, which underwent further crystallization of high-Or sanidine atvariable degrees (10–25%). Finally, possibly a short time before the eruption, the UPFU magmas were able tomix and mingle with the crystal-poor eruptible melts still persisting in the CI reservoir at the time of UPFU emis-sion. We suggest that the complex mechanisms described for the magma evolution feeding the CI eruption mayoccur whenever a crystal-mush is reactivated by new mafic magma input

    Viabilidade do emprego de cinza de casca de arroz natural em concreto estrutural. Parte I: propriedades mecânicas e microestrutura

    Get PDF
    A casca de arroz, para ser utilizada em concreto estrutural, necessita de queima com temperatura controlada e de moagem prévia para lhe conferir maior reatividade pozolânica. Este trabalho discute o emprego da cinza de casca de arroz (CCA) natural e residual, queimada sem controle de temperatura e sem moagem, de forma a simplificar o processamento da CCA e ampliar seu uso em concretos convencionais, em locais próximos onde é produzido, Estudou-se a sequência de colocação e o tempo de mistura dos materiais na betoneira, para obtenção do melhor desempenho da automoagem no tambor. Foram testadas misturas de concreto de referência com cimento Portland e com 15% e 25% de substituição de cimento, em massa, por CCA natural e moída. Foram realizados ensaios de resistência à compressão axial, tração por compressão diametral, módulo de elasticidade, retração total, porosimetria por intrusão de mercúrio, água quimicamente combinada e MEV. A análise dos resultados revela a viabilidade da substituição de 15% de cimento por CCA natural, com perda não significativa de resistência à tração e módulo de elasticidade a 28 dias, com recuperação total a 91 dias, para concretos com resistências à compressão entre 25 MPa e 40 MPa

    Linear Peptides-A Combinatorial Innovation in the Venom of Some Modern Spiders

    Get PDF
    In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process

    1,4-Diiodotetrafluorobenzene 3,5-di-(pyridin-4-yl)-1,2,4-thiadiazole <1/1>

    Get PDF
    The reactivity of 3,5-di-(pyridin-4-yl)-1,2,4-thiadiazole (L1) with 1,4-diiodotetrafluorobenzene (1,4-DITFB) was explored and the halogen-bonded 1:1 co-crystal (1) was successfully isolated and structurally characterized
    • …
    corecore