179 research outputs found

    Calculation of PandP_ and T_ odd effects in $"" sup 205_TIF including electron correlation

    Full text link
    A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter

    Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles

    Full text link
    We have shown within the quasistatic approximation that the giant fluctuations of local electromagnetic field in random fractal aggregates of silver nanospheres are strongly correlated with a local anisotropy factor S which is defined in this paper. The latter is a purely geometrical parameter which characterizes the deviation of local environment of a given nanosphere in an aggregate from spherical symmetry. Therefore, it is possible to predict the sites with anomalously large local fields in an aggregate without explicitly solving the electromagnetic problem. We have also demonstrated that the average (over nanospheres) value of S does not depend noticeably on the fractal dimension D, except when D approaches the trivial limit D=3. In this case, as one can expect, the average local environment becomes spherically symmetrical and S approaches zero. This corresponds to the well-known fact that in trivial aggregates fluctuations of local electromagnetic fields are much weaker than in fractal aggregates. Thus, we find that, within the quasistatics, the large-scale geometry does not have a significant impact on local electromagnetic responses in nanoaggregates in a wide range of fractal dimensions. However, this prediction is expected to be not correct in aggregates which are sufficiently large for the intermediate- and radiation-zone interaction of individual nanospheres to become important.Comment: 9 pages 9 figures. No revisions from previous version; only figure layout is change

    Pilot study of the safety and efficacy of angiogenic therapy in diabetic foot syndrome

    Get PDF
    BACKGROUND: The syndrome of diabetic foot remains the main cause of non-traumatic amputation of the lower extremity in the world. Even with the provision of comprehensive medical care in the conditions of a specialized center, 10-15% of patients do not succeed in healing the ulcerative defect due to the ischemic component. AIMS: The objective of this study is evaluation of safety and efficacy of pl-VEGF165 transfer in patients with neuroischemic type of diabetic foot syndrome. METHODS: The pilot study included 35 diabetic patients with neuroischemic foot ulcers (Wagner stage 1-2) who were not candidates for revascularization procedures (NCT02538705). The patients were closely monitored after repeated pl-VEGF165 intramuscular gene transfer (2,4 mg) at 1, 3, and 6 months after treatment. The primary efficacy endpoint was the surface area of the ulcers (sq.cm), the secondary endpoints were transcutaneous oxygen tension (Tcp02), ankle-brachial index (ABI), neuropathy disability score (NDS), neuropathy symptoms score (NSS), and Michigan neuropathy screening instrument (MNSI). Adverse events were monitored throughout the study. RESULTS: The use of pl-VEGF165 as part of complex treatment allowed to achieve wound healing in 65,7% of patients with chronic ulcerative defects, the safety of the target limb was 84%. Carrying out therapeutic angiogenesis as a part of the combined therapy ensured a reduction in the average area of the resistant to treatment defects from 3.6 [1.0; 7.05] cm2 to 0.0 [0.0;2.0] cm2 (p=0,001), which correlated with an increase in the TcPo2 index by 15% from 35 [29.5; 40.5] to 40.5 [36.0; 46.5] mm Hg (p= p=0,005) and in the ABI by 16% from 0.96 [0.82;1.08] to 1.11 [0.85; 1.24] (p=0,062). The decrease in the signs of diabetic neuropathy was determined - the scores of NSS scales and VAT decreased from 6,5 [5.75; 8.0) to 6.0 [5.25; 7.0] (p=0,004) and from 9.0 [8.0; 13.5] to 8.0 [7.0; 12.7] (p=0,001), respectively. No adverse effects associated with the use of pl-VEGF165 were recorded. CONCLUSIONS: Thus, preliminary results of the pilot study show that the use of pl-VEGF165 gene transfer in combination therapy allows for complete healing of neuroischemic diabetic foot ulcers in the majority of patients

    Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV

    Get PDF
    The neutron capture cross section of 204Pb has been measured at the CERN n_TOF installation with high resolution in the energy range from 1 eV to 440 keV. An R-matrix analysis of the resolved resonance region, between 1 eV and 100 keV, was carried out using the SAMMY code. In the interval between 100 keV and 440 keV we report the average capture cross section. The background in the entire neutron energy range could be reliably determined from the measurement of a 208Pb sample. Other systematic effects in this measurement could be investigated and precisely corrected by means of detailed Monte Carlo simulations. We obtain a Maxwellian average capture cross section for 204Pb at kT=30 keV of 79(3) mb, in agreement with previous experiments. However our cross section at kT=5 keV is about 35% larger than the values reported so far. The implications of the new cross section for the s-process abundance contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.

    New measurement of neutron capture resonances of 209Bi

    Get PDF
    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At this low temperature an important part of the heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He shells of low mass, thermally pulsing asymptotic giant branch stars. With the improved set of cross sections we obtain an s-process fraction of 19(3)% of the solar bismuth abundance, resulting in an r-process residual of 81(3)%. The present (n,gamma) cross-section measurement is also of relevance for the design of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.

    Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV

    Resonance capture cross section of 207Pb

    Get PDF
    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.Comment: 7 pages, 3 figures, to be published in Phys. Rev.

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take
    corecore