11 research outputs found

    Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds

    Get PDF
    The main hydrophilic antioxidant compounds (3-, 4-, and 5-monocaffeoylquinic and 3,4-, 3,5-, and 4,5-dicaffeoylquinic acids, caffeine, and browned compounds, including melanoidins) and the antioxidant capacity (Folin-Ciocalteu, ABTS, DPPH, Fremy's salt, and TEMPO) were evaluated in Arabica and Robusta spent coffee obtained from the preparation of coffee brews with the most common coffeemakers (filter, espresso, plunger, and mocha). All spent coffee grounds, with the exception of those from the mocha coffeemaker, had relevant amounts of total caffeoylquinic acids (6.22-13.24 mg/g of spent coffee), mainly dicaffeoylquinic acids (3.31-5.79 mg/g of spent coffee), which were 4-7-fold higher than in their respective coffee brews. Caffeine ranged from 3.59 to 8.09 mg/g of spent coffee. The antioxidant capacities of the aqueous spent coffee extracts were 46.0-102.3% (filter), 59.2-85.6% (espresso), and <42% (plunger) in comparison to their respective coffee brews. This study obtained spent coffee extracts with antioxidant properties that can be used as a good source of hydrophilic bioactive compounds

    Catabolism of raw and cooked green pepper (Capsicum annuum) (poly)phenolic compounds after simulated gastrointestinal digestion and faecal fermentation

    No full text
    A total of 21 (poly)phenolic compounds (free and bound) were quantified in raw, olive oil fried, sunflower oil fried and griddled green pepper before and after a simulated gastrointestinal digestion. Flavonoids, particularly quercetin rhamnoside, were the main compounds. The bioaccessibility of (poly)phenolic compounds after gastrointestinal digestion was higher in cooked (>82%) than in raw (48%) samples, showing a positive effect of heat treatment on the release of (poly)phenols from the vegetal matrix. Additionally, a faecal fermentation was carried out for 24h. A time-dependent microbial metabolic activity was observed, which resulted firstly (<5h) in the hydrolysis of flavonoid glycosides and then in the formation of 3 catabolites, namely 3,4-dihydroxybenzoic acid, dihydrocaffeic acid and 3-(3′-hydroxyphenyl)propionic acid, this being by far the most abundant. Catabolic pathways for colonic microbial degradation of flavonoids and hydroxycinnamic acids have been proposed. Griddled pepper showed the highest amount of (poly)phenols both after gastrointestinal digestion and colonic fermentation

    Bioaccessibility of (poly)phenolic compounds of raw and cooked cardoon (Cynara cardunculus L.) after simulated gastrointestinal digestion and fermentation by human colonic microbiota

    No full text
    A total of 17 (poly)phenolic compounds have been quantified in the free and bound fraction of raw, olive oil fried, sunflower oil fried and griddled cardoon (Cynara cardunculus L.). Caffeoylquinic acid derivatives (CQAs), particularly 5-CQA, were the major compounds. The bioaccessibility of (poly)phenols after gastrointestinal digestion and fecal fermentation (24 h) was studied. Heat treatment exerted a positive effect on the bioaccessibility of (poly)phenols. In raw cardoon, only 2% of the total amount of (poly)phenolic compounds was still bioaccessible after gastrointestinal digestion, while in cooked cardoon samples, between 60 and 67% of the total amount of (poly)phenolic compounds remained unmodified. An important microbial metabolic activity was observed during the fecal fermentation, which resulted in a complete degradation of CQAs after 5 h and in the formation of different catabolites. 3-(3′-hydroxyphenyl)propionic acid was by far the most abundant catabolite produced. Catabolic pathways for colonic microbial degradation of CQAs of cardoon have been proposed
    corecore