32 research outputs found

    Reward Processing in Children With Psychotic-Like Experiences.

    Get PDF
    Alterations to striatal reward pathways have been identified in individuals with psychosis. They are hypothesized to be a key mechanism that generate psychotic symptoms through the production of aberrant attribution of motivational salience and are proposed to result from accumulated childhood adversity and genetic risk, making the striatal system hyper-responsive to stress. However, few studies have examined whether children with psychotic-like experiences (PLEs) also exhibit these alterations, limiting our understanding of how differences in reward processing relate to hallucinations and delusional ideation in childhood. Consequently, we examined whether PLEs and PLE-related distress were associated with reward-related activation in the nucleus accumbens (NAcc). The sample consisted of children (N = 6718) from the Adolescent Brain Cognitive Development (ABCD) study aged 9-10 years who had participated in the Monetary Incentive Delay (MID) task in functional MRI. We used robust mixed-effects linear regression models to investigate the relationship between PLEs and NAcc activation during the reward anticipation and reward outcome stages of the MID task. Analyses were adjusted for gender, household income, ethnicity, depressive symptoms, movement in the scanner, pubertal development, scanner ID, subject and family ID. There was no reliable association between PLEs and alterations to anticipation- or outcome-related striatal reward processing. We discuss the implications for developmental models of psychosis and suggest a developmental delay model of how PLEs may arise at this stage of development

    Identification of ncRNAs as Potential Therapeutic Targets in Multiple Sclerosis Through Differential ncRNA – mRNA Network Analysis

    Get PDF
    Background: Several studies have revealed a potential role for both small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) in the physiopathology of relapsing-remitting multiple sclerosis (RRMS). This potential implication has been mainly described through differential expression studies. However, it has been suggested that, in order to extract additional information from large-scale expression experiments, differential expression studies must be complemented with differential network studies. Thus, the present work is aimed at the identification of potential therapeutic ncRNA targets for RRMS through differential network analysis of ncRNA - mRNA coexpression networks. ncRNA - mRNA coexpression networks have been constructed from both selected ncRNA (specifically miRNAs, snoRNAs and sdRNAs) and mRNA large-scale expression data obtained from 22 patients in relapse, the same 22 patients in remission and 22 healthy controls. Condition-specific (relapse, remission and healthy) networks have been built and compared to identify the parts of the system most affected by perturbation and aid the identification of potential therapeutic targets among the ncRNAs. Results: All the coexpression networks we built present a scale-free topology and many snoRNAs are shown to have a prominent role in their architecture. The differential network analysis (relapse vs. remission vs. controls' networks) has revealed that, although both network topology and the majority of the genes are maintained, few ncRNA - mRNA links appear in more than one network. We have selected as potential therapeutic targets the ncRNAs that appear in the disease-specific network and were found to be differentially expressed in a previous study. Conclusions: Our results suggest that the diseased state of RRMS has a strong impact on the ncRNA - mRNA network of peripheral blood leukocytes, as a massive rewiring of the network happens between conditions. Our findings also indicate that the role snoRNAs have in targeted gene silencing is a widespread phenomenon. Finally, among the potential therapeutic target ncRNAs, SNORA40 seems to be the most promising candidate.This work has been supported partially by Fondo de investigacion Sanitaria from Instituto Carlos III through the project FIS PS09/02105, by SAIOTEK (SAIO11-PC11BN003) and by the Spanish Net of Multiple Sclerosis. HI and MMC has been supported by departamento de educacion del Gobierno Vasco through a PhD grant

    CYP2D6 Genetic Variation and Antipsychotic-Induced Weight Gain:A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Antipsychotic-induced weight gain is a contributing factor in the reduced life expectancy reported amongst people with psychotic disorders. CYP2D6 is a liver enzyme involved in the metabolism of many commonly used antipsychotic medications. We investigated if CYP2D6 genetic variation influenced weight or BMI among people taking antipsychotic treatment. METHODS: We conducted a systematic review and a random effects meta-analysis of publications in Pubmed, Embase, PsychInfo, and CENTRAAL that had BMI and/or weight measurements of patients on long-term antipsychotics by their CYP2D6-defined metabolic groups (poor, intermediate, normal/extensive, and ultra-rapid metabolizers, UMs). RESULTS: Twelve studies were included in the systematic review. All cohort studies suggested that the presence of reduced-function or non-functional alleles for CYP2D6 was associated with greater antipsychotic-induced weight gain, whereas most cross-sectional studies did not find any significant associations. Seventeen studies were included in the meta-analysis with clinical data of 2,041 patients, including 93 poor metabolizers (PMs), 633 intermediate metabolizers (IMs), 1,272 normal metabolizers (NMs), and 30 UMs. Overall, we did not find associations in any of the comparisons made. The estimated pooled standardized differences for the following comparisons were (i) PM versus NM; weight = –0.07 (95%CI: –0.49 to 0.35, p = 0.74), BMI = 0.40 (95%CI: –0.19 to 0.99, p = 0.19). (ii) IM versus NM; weight = 0.09 (95% CI: –0.04 to 0.22, p = 0.16) and BMI = 0.09 (95% CI: –0.24 to 0.41, p = 0.60). (iii) UM versus EM; weight = 0.01 (95% CI: –0.37 to 0.40, p = 0.94) and BMI = –0.08 (95%CI: –0.57 to 0.42, p = 0.77). CONCLUSION: Our systematic review of cohort studies suggested that CYP2D6 poor metabolizers have higher BMI than normal metabolizers, but the data of cross-sectional studies and the meta-analysis did not show this association. Although our review and meta-analysis constitutes one of the largest studies with comprehensively genotyped samples, the literature is still limited by small numbers of participants with genetic variants resulting in poor or UMs status. We need further studies with larger numbers of extreme metabolizers to establish its clinical utility in antipsychotic treatment. CYP2D6 is a key gene for personalized prescribing in mental health

    Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage

    Get PDF
    SummaryResident neural precursor cells (NPCs) have been reported for a number of adult tissues. Understanding their physiological function or, alternatively, their activation after tissue damage or in vitro manipulation remains an unsolved issue. Here, we investigated the source of human dermal NPCs in adult tissue. By following an unbiased, comprehensive approach employing cell-surface marker screening, cell separation, transcriptomic characterization, and in vivo fate analyses, we found that p75NTR+ precursors of human foreskin can be ascribed to the Schwann (CD56+) and perivascular (CD56−) cell lineages. Moreover, neural differentiation potential was restricted to the p75NTR+CD56+ Schwann cells and mediated by SOX2 expression levels. Double-positive NPCs were similarly obtained from human cardiospheres, indicating that this phenomenon might be widespread

    Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration

    Get PDF
    Sleep duration has been linked to a wide range of negative health outcomes and to reduced life expectancy. We present genome-wide association studies of short ( ≤ 5 h) and long ( ≥ 10 h) sleep duration in adults of European (N = 445,966), African (N = 27,785), East Asian (N = 3141), and admixed-American (N = 16,250) ancestry from UK Biobank and the Million Veteran Programme. In a cross-population meta-analysis, we identify 84 independent loci for short sleep and 1 for long sleep. We estimate SNP-based heritability for both sleep traits in each ancestry based on population derived linkage disequilibrium (LD) scores using cov-LDSC. We identify positive genetic correlation between short and long sleep traits (rg = 0.16 ± 0.04; p = 0.0002), as well as similar patterns of genetic correlation with other psychiatric and cardiometabolic phenotypes. Mendelian randomisation reveals a directional causal relationship between short sleep and depression, and a bidirectional causal relationship between long sleep and depression

    Psychosis Endophenotypes:A Gene-Set-Specific Polygenic Risk Score Analysis

    Get PDF
    BACKGROUND AND HYPOTHESIS: Endophenotypes can help to bridge the gap between psychosis and its genetic predispositions, but their underlying mechanisms remain largely unknown. This study aims to identify biological mechanisms that are relevant to the endophenotypes for psychosis, by partitioning polygenic risk scores into specific gene sets and testing their associations with endophenotypes. STUDY DESIGN: We computed polygenic risk scores for schizophrenia and bipolar disorder restricted to brain-related gene sets retrieved from public databases and previous publications. Three hundred and seventy-eight gene-set-specific polygenic risk scores were generated for 4506 participants. Seven endophenotypes were also measured in the sample. Linear mixed-effects models were fitted to test associations between each endophenotype and each gene-set-specific polygenic risk score. STUDY RESULTS: After correction for multiple testing, we found that a reduced P300 amplitude was associated with a higher schizophrenia polygenic risk score of the forebrain regionalization gene set (mean difference per SD increase in the polygenic risk score: -1.15 µV; 95% CI: -1.70 to -0.59 µV; P = 6 × 10-5). The schizophrenia polygenic risk score of forebrain regionalization also explained more variance of the P300 amplitude (R2 = 0.032) than other polygenic risk scores, including the genome-wide polygenic risk scores. CONCLUSIONS: Our finding on reduced P300 amplitudes suggests that certain genetic variants alter early brain development thereby increasing schizophrenia risk years later. Gene-set-specific polygenic risk scores are a useful tool to elucidate biological mechanisms of psychosis and endophenotypes, offering leads for experimental validation in cellular and animal models

    Psychosis Endophenotypes: A Gene-Set-Specific Polygenic Risk Score Analysis

    Get PDF
    BACKGROUND AND HYPOTHESIS: Endophenotypes can help to bridge the gap between psychosis and its genetic predispositions, but their underlying mechanisms remain largely unknown. This study aims to identify biological mechanisms that are relevant to the endophenotypes for psychosis, by partitioning polygenic risk scores into specific gene sets and testing their associations with endophenotypes. STUDY DESIGN: We computed polygenic risk scores for schizophrenia and bipolar disorder restricted to brain-related gene sets retrieved from public databases and previous publications. Three hundred and seventy-eight gene-set-specific polygenic risk scores were generated for 4506 participants. Seven endophenotypes were also measured in the sample. Linear mixed-effects models were fitted to test associations between each endophenotype and each gene-set-specific polygenic risk score. STUDY RESULTS: After correction for multiple testing, we found that a reduced P300 amplitude was associated with a higher schizophrenia polygenic risk score of the forebrain regionalization gene set (mean difference per SD increase in the polygenic risk score: -1.15 µV; 95% CI: -1.70 to -0.59 µV; P = 6 × 10-5). The schizophrenia polygenic risk score of forebrain regionalization also explained more variance of the P300 amplitude (R2 = 0.032) than other polygenic risk scores, including the genome-wide polygenic risk scores. CONCLUSIONS: Our finding on reduced P300 amplitudes suggests that certain genetic variants alter early brain development thereby increasing schizophrenia risk years later. Gene-set-specific polygenic risk scores are a useful tool to elucidate biological mechanisms of psychosis and endophenotypes, offering leads for experimental validation in cellular and animal models

    Genetic copy number variants, cognition and psychosis: a meta-analysis and a family study

    Get PDF
    The burden of large and rare copy number genetic variants (CNVs) as well as certain specific CNVs increase the risk of developing schizophrenia. Several cognitive measures are purported schizophrenia endophenotypes and may represent an intermediate point between genetics and the illness. This paper investigates the influence of CNVs on cognition. We conducted a systematic review and meta-analysis of the literature exploring the effect of CNV burden on general intelligence. We included ten primary studies with a total of 18,847 participants and found no evidence of association. In a new psychosis family study, we investigated the effects of CNVs on specific cognitive abilities. We examined the burden of large and rare CNVs (>200 kb, <1% MAF) as well as known schizophrenia-associated CNVs in patients with psychotic disorders, their unaffected relatives and controls (N = 3428) from the Psychosis Endophenotypes International Consortium (PEIC). The carriers of specific schizophrenia-associated CNVs showed poorer performance than non-carriers in immediate (P = 0.0036) and delayed (P = 0.0115) verbal recall. We found suggestive evidence that carriers of schizophrenia-associated CNVs had poorer block design performance (P = 0.0307). We do not find any association between CNV burden and cognition. Our findings show that the known high-risk CNVs are not only associated with schizophrenia and other neurodevelopmental disorders, but are also a contributing factor to impairment in cognitive domains such as memory and perceptual reasoning, and act as intermediate biomarkers of disease risk.This work was supported by the Medical Research Council (G0901310) and the Wellcome Trust (grants 085475/B/08/Z, 085475/Z/08/Z). This study was supported by the NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London and by the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust at King’s College London. Further support to EB: Mental Health Research UK’s John Grace QC award, BMA Margaret Temple grants 2016 and 2006, MRC—Korean Health Industry Development Institute Partnering Award (MC_PC_16014), MRC New Investigator Award and a MRC Centenary Award (G0901310), National Institute of Health Research UK post-doctoral fellowship, the Psychiatry Research Trust, the Schizophrenia Research Fund, the Brain and Behaviour Research foundation’s NARSAD Young Investigator Awards 2005, 2008, Wellcome Trust Research Training Fellowship, the NIHR Biomedical Research Centre at UCLH, and the NIHR Biomedical Research Centre for Mental Health at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry King’s College London. Further support to co-authors: The Brain and Behaviour Research foundation’s (NARSAD’s) Young Investigator Award (Grant 22604, awarded to CI). The BMA Margaret Temple grant 2016 to JT. A 2014 European Research Council Marie Curie award to A Díez-Revuelta. HI has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 747429. A Medical Research Council doctoral studentship to JH-S, IA-Z and AB. A Mental Health Research UK studentship to RM. VB is supported by a Wellcome Trust Seed Award in Science (200589/Z/16/Z). FWO Senior Clinical Fellowship to RvW. The infrastructure for the GROUP consortium is funded through the Geestkracht programme of the Dutch Health Research Council (ZON-MW, grant number 10-000-1001), and matching funds from participating pharmaceutical companies (Lundbeck, AstraZeneca, Eli Lilly, Janssen Cilag) and universities and mental health care organisations (Amsterdam: Academic Psychiatric Centre of the Academic Medical Centre and the mental health institutions: GGZ Ingeest, Arkin, Dijk en Duin, GGZ Rivierduinen, Erasmus Medical Centre, GGZ Noord Holland Noord. Groningen: University Medical Centre Groningen and the mental health institutions: Lentis, GGZ Friesland, GGZ Drenthe, Dimence, Mediant, GGNet Warnsveld, Yulius Dordrecht and Parnassia psycho-medical centre The Hague. Maastricht: Maastricht University Medical Centre and the mental health institutions: GGZ Eindhoven en De Kempen, GGZ Breburg, GGZ Oost-Brabant, Vincent van Gogh voor Geestelijke Gezondheid, Mondriaan, Virenze riagg, Zuyderland GGZ, MET ggz, Universitair Centrum Sint-Jozef Kortenberg, CAPRI University of Antwerp, PC Ziekeren Sint-Truiden, PZ Sancta Maria Sint-Truiden, GGZ Overpelt, OPZ Rekem. Utrecht: University Medical Centre Utrecht and the mental health institutions Altrecht, GGZ Centraal and Delta). The Santander cohort was supported by Instituto de Salud Carlos III (PI020499, PI050427, PI060507), SENY Fundació (CI 2005-0308007), Fundacion Ramón Areces and Fundacion Marqués de Valdecilla (API07/011, API10/13). We thank Valdecilla Biobank for providing the biological PAFIP samples and associated data included in this study and for its help in the technical execution of this work; we also thank IDIVAL Neuroimaging Unit for its help in the acquisition and processing of imaging PAFIP data

    Transcriptomic integration of D4R and MOR signaling in the rat caudate putamen.

    No full text
    Morphine binding to opioid receptors, mainly to μ opioid receptor (MOR), induces alterations in intracellular pathways essential to the initial development of addiction. The activation of the dopamine D4 receptor (D4R), which is expressed in the caudate putamen (CPu), mainly counteracts morphine-induced alterations in several molecular networks. These involve transcription factors, adaptive changes of MOR signaling, activation of the nigrostriatal dopamine pathway and behavioural effects, underlining functional D4R/MOR interactions. To shed light on the molecular mechanisms implicated, we evaluated the transcriptome alterations following acute administration of morphine and/or PD168,077 (D4R agonist) using whole-genome microarrays and a linear regression-based differential expression analysis. The results highlight the development of a unique transcriptional signature following the co-administration of both drugs that reflects a countereffect of PD168,077 on morphine effects. A KEGG pathway enrichment analysis using GSEA identified 3 pathways enriched positively in morphine vs control and negatively in morphine + PD168,077 vs morphine (Ribosome, Complement and Coagulation Cascades, Systemic Lupus Erythematosus) and 3 pathways with the opposite enrichment pattern (Alzheimer's Disease, Neuroactive Ligand Receptor Interaction, Oxidative Phosphorilation). This work supports the massive D4R/MOR functional integration at the CPu and provides a gateway to further studies on the use of D4R drugs to modulate morphine-induced effects
    corecore