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Genome-wide association studies and cross-
population meta-analyses investigating
short and long sleep duration
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Renato Polimanti 3,4, Murray B. Stein 13,14, Elvira Bramon 1,18 &
Joel Gelernter 3,4

Sleep duration has been linked to a wide range of negative health outcomes
and to reduced life expectancy. We present genome-wide association studies
of short ( ≤ 5 h) and long ( ≥ 10 h) sleep duration in adults of European
(N = 445,966), African (N = 27,785), East Asian (N = 3141), and admixed-
American (N = 16,250) ancestry from UK Biobank and the Million Veteran
Programme. In a cross-population meta-analysis, we identify 84 independent
loci for short sleep and 1 for long sleep. We estimate SNP-based heritability for
both sleep traits in each ancestry based on population derived linkage dis-
equilibrium (LD) scores using cov-LDSC. We identify positive genetic correla-
tion between short and long sleep traits (rg = 0.16 ± 0.04; p =0.0002), as well
as similar patterns of genetic correlation with other psychiatric and cardio-
metabolic phenotypes. Mendelian randomisation reveals a directional causal
relationship between short sleep and depression, and a bidirectional causal
relationship between long sleep and depression.

Sleep is one of the most highly conserved traits across the animal
kingdom, indicating a strong evolutionary requirement. It is an essential
and fundamental property of neurons and networks across the brain1,2.
Sleep occurs in any organism with even a very simple neuronal/glial
network (e.g. Cassiopeia, C. elegans), and is preserved in subjects sur-
viving lesions in any brain region1,3–5. However, many of the molecular
processes underlying sleep remain unclear.

Human sleep can be characterised along dimensions such as
duration, timing, efficiency, and regularity, each sometimes associated
with adverse health outcomes. However, sleep duration has beenmost
widely studied, and relates to outcomes including obesity, cardiovas-
cular disease, and mortality6. Both unusually long and unusually short
sleep duration have been related to multiple psychiatric conditions,

including major depressive disorder (MDD), anxiety, and psychosis,
though a causal relationship between sleep duration and these dis-
orders is not established7–10.

Genetic research, and in particular genome-wide association stu-
dies (GWAS), may help elucidate some of the biological processes that
underlie variability in sleep across individuals, by identifying risk
loci associated with higher or lower-than-average sleep duration. Self-
reported sleep duration is a complex trait, with a genetic component
established through twin and family studies as well as several
GWAS8,9,11–15. A recent GWAS in 446,118 European-ancestry (EUR) UK
Biobank participants identified over 70 independent genetic loci
associated with habitual, self-reported sleep duration (measured as a
continuous trait reported in hour increments), as well as several linked

Received: 16 August 2022

Accepted: 28 August 2023

Check for updates

A full list of affiliations appears at the end of the paper. *A list of authors and their affiliations appears at the end of the paper.
e-mail: joel.gelernter@yale.edu

Nature Communications |         (2023) 14:6059 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-3428-5070
http://orcid.org/0000-0002-3428-5070
http://orcid.org/0000-0002-3428-5070
http://orcid.org/0000-0002-3428-5070
http://orcid.org/0000-0002-3428-5070
http://orcid.org/0000-0001-8431-9569
http://orcid.org/0000-0001-8431-9569
http://orcid.org/0000-0001-8431-9569
http://orcid.org/0000-0001-8431-9569
http://orcid.org/0000-0001-8431-9569
http://orcid.org/0000-0002-0540-6080
http://orcid.org/0000-0002-0540-6080
http://orcid.org/0000-0002-0540-6080
http://orcid.org/0000-0002-0540-6080
http://orcid.org/0000-0002-0540-6080
http://orcid.org/0000-0001-6052-156X
http://orcid.org/0000-0001-6052-156X
http://orcid.org/0000-0001-6052-156X
http://orcid.org/0000-0001-6052-156X
http://orcid.org/0000-0001-6052-156X
http://orcid.org/0000-0001-9129-1699
http://orcid.org/0000-0001-9129-1699
http://orcid.org/0000-0001-9129-1699
http://orcid.org/0000-0001-9129-1699
http://orcid.org/0000-0001-9129-1699
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0002-7694-6391
http://orcid.org/0000-0001-9726-603X
http://orcid.org/0000-0001-9726-603X
http://orcid.org/0000-0001-9726-603X
http://orcid.org/0000-0001-9726-603X
http://orcid.org/0000-0001-9726-603X
http://orcid.org/0000-0003-1567-2240
http://orcid.org/0000-0003-1567-2240
http://orcid.org/0000-0003-1567-2240
http://orcid.org/0000-0003-1567-2240
http://orcid.org/0000-0003-1567-2240
http://orcid.org/0000-0003-0745-6046
http://orcid.org/0000-0003-0745-6046
http://orcid.org/0000-0003-0745-6046
http://orcid.org/0000-0003-0745-6046
http://orcid.org/0000-0003-0745-6046
http://orcid.org/0000-0001-9564-2871
http://orcid.org/0000-0001-9564-2871
http://orcid.org/0000-0001-9564-2871
http://orcid.org/0000-0001-9564-2871
http://orcid.org/0000-0001-9564-2871
http://orcid.org/0000-0003-1369-5983
http://orcid.org/0000-0003-1369-5983
http://orcid.org/0000-0003-1369-5983
http://orcid.org/0000-0003-1369-5983
http://orcid.org/0000-0003-1369-5983
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://orcid.org/0000-0002-4067-1859
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41249-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41249-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41249-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-41249-y&domain=pdf
mailto:joel.gelernter@yale.edu


specifically to unusually long (nine hours ormore) and short (six hours
or less) sleep duration7. SNP-based heritability of sleep duration was
reported to be 9.8%. This study, and several others, identified common
variants at or near the VRK2 and PAX8 genes8,16,17. VRK2 encodes a
serine/threonine kinase protein which is essential to multiple signal
transduction pathways7,14,18. Single nucleotide polymorphisms (SNPs)
within this gene have been associated with a range of psychiatric dis-
orders, such as schizophrenia and depression, as well as epilepsy and
some cardiometabolic traits. PAX8 is a transcription factor important
in the development and function of the thyroid.

Like many GWAS, these studies have been conducted primarily in
EUR participants. Replicating these findings in other populations, or
identifying ancestry-specific risk loci, is essential for furthering our

understanding of the biological mechanisms behind sleep, and the
effects of sleep on biology.

The UK Biobank and Million Veteran Programme (MVP) represent
two of the world’s largest biobanks, both containing genetic data
and a wide range of environmental and medical information. UK
Biobank is a population-based study, including over 500,000UK-based
participants19,20. MVP is a US military sample21, having recruited so far
over 825,000 veterans.We conducted a cross-populationmeta-analysis
of short and long sleep duration using GWAS results from UK Biobank
andMVP. This study aimed tobuildon theexistingunderstandingof the
genetics of sleep duration and to take advantage of the diverse popu-
lations included in UK Biobank and MVP to consider risk loci across
multiple populations, as well as ancestry-specific regions of interest.

Results
Sample
Table 1 outlines the age and sex distribution in each ancestry group
across the two cohorts. UK Biobank has a higher proportion of women
than men. As a US military veteran sample, men are heavily over-
represented inMVP, especially in EURand somewhat less so in theAFR,
EAS and AMR samples. Both cohorts are adult samples, with UK Bio-
bank specifically recruiting adults aged40–70 years. Though therewas
no age restriction for recruitment to MVP, the median age in MVP is
higher at 66 years versus 58 years in UK Biobank. AFR participants
make up a higher percentage of the overall sample in MVP than UKB.
Figure 1 summarises the distribution of sleep hours in each cohort.

Hours of daylight exposure
In the UK Biobank samples, higher levels of solar irradiation were sig-
nificantly associated with shorter reported sleep duration, though the
effect size is small (estimate = −4.8 × 10−4 ± 5 × 10−5 h, p < 2 × 10−16). In the
MVP sample, basedon annual irradiationdata rather thanmonthly data,
increased solar irradiation was not significantly associated with sleep
duration (estimate = −4.0 × 10−3 ± 3.0 × 10−3 h, p =0.157).

Ancestry-specific meta-analyses
A meta-analysis comparing short (n = 47,054) versus normal
(n = 382,950) sleep duration EUR individuals from both cohorts iden-
tified 46 genomic risk loci that reached genome-wide significance
(GWS) (Supplementary Data 1–6, Supplementary Figs. 17 and 19). Of
these, 19 were previously associated with a variety of sleep-related
phenotypes, including two (rs11693221 on chromosome 2 and
rs6466488 on chromosome 7) which have been identified in GWAS on
sleep-related phenotypes in independent samples (i.e., samples not
including UK Biobank or MVP subjects22,23 (Supplementary Data 1, 2).

A meta-analysis comparing long (n = 15,962) versus normal sleep
duration in the EUR participants from both cohorts identified one
genome-wide significant locus on chromosome 2 (rs62158206, OR =
0.93 ±0.01, p = 3.6 × 10−8) near the PAX8 gene (Supplementary Figs. 17
and 20). This SNP has previously been identified in several GWAS of
insomnia and sleep duration, including one study in an independent
sample8. We conducted sensitivity analyses to consider the impact of
sex and shift work patterns. We see highly consistent results when
comparing these to our primary EUR analyses, although the reduced
sample size limits the power to define genome-wide significant loci. In
all cases, rg is close to 1 (Supplementary Material Sections 3, 4, and 5;
Supplementary Figs. 28–31).

SNP-based heritability (h2) was estimated to be 11.9%
(p = 2.45 × 10−115) for short sleep, and 7.8% (p = 1.61 × 10−20) for long sleep.
Inflation was within the expected range given the sample sizes and
polygenicity of the traits in question, with LD intercept close to one
(intercept short sleep = 1.017 ±0.01; intercept long sleep =0.99 ±0.01)
(Supplementary Data 11 and 12).

A meta-analysis comparing short (n = 11,352) versus normal
(n = 15,305) sleep duration in AFR participants of both cohorts did not

Table 1 | Sample demographics and case/control status

Populationa UK Biobank MVP

Total N = 493,142 N 293,037 200,100

Nshort(≤5 h) (%) 21,086 (7.2) 41,425 (20.7)

Nmedium(7–8 h) (%) 264,982
(90.4)

147,962 (73.9)

Nlong(≥10 h) (%) 6969 (2.4) 10,713 (5.4)

European (EUR)
N = 445,966 (90.4%)

N (% female) 278,003
(54.1)

167,963 (7.4)

Age (years) Mean (SD):
56.8 (8.0)
Median: 58

Mean (SD): 66.8
(11.6)
Median: 67

Sleep dura-
tion (hours)

Mean (SD):
7.3 (1.0)
Median: 7

Mean: 7.1 (1.3)
Median: 7

Nshort(≤5 h) (%) 18,915 (6.8) 28,139 (16.8)

Nmedium(7–8 h) (%) 252,567
(90.9)

130,383 (77.6)

Nlong(≥10 h) (%) 6521 (2.3) 9441 (5.6)

African (AFR)
N = 27,785 (5.6%)

N (% female) 5657 (59.0) 22,128 (13.5)

Age (years) Mean (SD):
51.86 (8.1)
Median: 50

Mean (SD): 60.7
(10.9)
Median: 61

Sleep dura-
tion (hours)

Mean (SD):
6.9 (1.6)
Median: 7

Mean (SD): 6.4
(1.3)
Median: 6

Nshort(≤5 h) (%) 1396 (24.7) 9956 (45.0)

Nmedium(7–8 h) (%) 4017 (71.0) 11,288 (51.0)

Nlong(≥10 h) (%) 244 (4.3) 884 (4.0)

Admixed American
(AMR)
N = 16,250 (3.3%)

N (% female) 7712 (56.7) 8538 (9.4)

Age (years) Mean (SD):
55.4 (8.3)
Median: 56

Mean (SD):
60.6 (13.2
Median:63

Sleep duration (h) Mean (SD):
7.2 (1.0)
Median: 7

Mean (SD):6.7
(1.3)
Median:7

Nshort(≤5 h) (%) 628 (8.1) 2824 (33.1)

Nmedium(7–8 h) (%) 6928 (89.8) 5371 (62.9)

Nlong(≥10 h) (%) 156 (2.0) 343 (4.0)

East Asian (EAS)
N = 3141 (0.6%)

N(% female) 1670 (67.1) 1471 (10.8)

Age (years) Mean (SD):
51.9 (7.8)
Median: 51

Mean (SD): 59.9
(15.8)
Median: 63

Sleep duration (h) Mean (SD):
7.3 (1.1)
Median: 7

Mean (SD): 6.5
(1.2)
Median: 6

Nshort(≤5 h) (%) 152 (9.1) 506 (34.4)

Nmedium(7–8 h) (%) 1470 (88.0) 920 (62.5)

Nlong(≥10 h) (%) 48 (2.9) 45 (3.1)
aAll groups defined based on reference panel21.
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identify anyGWS loci, though42 loci reached a suggestive threshold of
p ≤ 1 × 10−5, with the strongest associationat rs1412139 on chromosome
1 (OR= 1.1 ± 0.02, p = 1.9 × 10−7) (Supplementary Data 7–10, Supple-
mentary Figs. 21 and 23).

A meta-analysis comparing long (n = 1128) versus normal sleep
duration in AFR participants from both cohorts identified one GWS
locus, rs148926968 on chromosome 13 (OR =0.43 ±0.1, p = 2.6 × 10−8)
(Supplementary Figs. 21 and 24). SNP-based inflation was within the
expected range given the sample sizes and polygenicity of the traits in
question.

With LD scores calculated from UK Biobank data, we estimate the
SNP-based heritability of short sleep duration in AFR to be 8.8 (inter-
cept = 1.00 ±0.01, p = 0.04), and usingMVP LD score data, we estimate
the SNP-based heritability of short sleep duration in AFR to be 7.5%
(intercept = 0.99 ±0.01, p = 4.0 × 10−3). SNP-based heritability for long
sleep was not significant in this sample using either set of LD scores
(Table 2 and Supplementary Data 11 and 12).

Detailed results for all primary analyses can be found in the sup-
plementary material (Supplementary Material Section 1, Supplemen-
tary Figs. 1–16).

Cross-population meta-analyses
We conducted a cross-population meta-analysis incorporating both
the EUR and AFR GWAS described previously, as well as data from
smaller GWAS of EAS and AMR participants from both cohorts (see
supplementary material for results of these primary GWAS). The
results of both short versus normal and long versus normal sleep
duration were filtered to remove any variant that was not present
across all four population groups in at least one of the primary cohorts.

After filtering, the analysis of short (n = 62,516) versus normal
(n = 412,944) sleep duration meta-analysis resulted in a total of

7,574,717 imputed genetic variants, among which we identified 84
independentGWS risk loci (Fig. 2, SupplementaryData 13).Of these 84,
13 have been previously associated with sleep-related phenotypes,
including two in independent samples (rs62158206 on chromosome 2
and rs1989903 on chromosome 7)8,23 (Supplementary Data 15).

After filtering, the meta-analysis of long (n = 15,962) versus normal
sleep duration resulted in a total of 7,282,278 imputed genetic variants
and revealed one genome-wide significant association on chromosome
3 (rs9810253, OR= 1.11 ± 0.02, p = 1.24 × 10−8) (Fig. 2, Supplementary
Data 14). A further 64 independent loci reached a suggestive threshold
of 1 × 10−5. Of these 65 loci, seven have been previously associated with
sleep-related phenotypes, including one in an independent sample
(rs62158206 on chromosome 2)8 (Supplementary Data 16).

Gene-based tests
A gene-based test mapped input SNPs for the short vs. normal meta-
analysis in EUR subjects to 18,565 protein-coding genes. Of these, 54
reached a Bonferroni-adjusted significance threshold of 2.69 × 10−6

(Fig. 3). The top gene identified was FOXP2 (p = 2.29 × 10−13). A gene-
based test mapped input SNPs for the long vs. normalmeta-analysis in
EUR subjects to 18,460 protein-coding genes; none reached the
Bonferroni-adjusted significance threshold of 2.65 × 10−6 (Supplemen-
tary Fig. 18).

In the AFR gene-based test, input SNPs for the short vs. normal
meta-analysis mapped to 18,292 protein-coding genes, none of which
reached a Bonferroni-adjusted significance threshold of 2.73 × 10−6

(Supplementary Fig. 22). Input SNPs for the long vs. normal meta-
analysis mapped to 19,074 protein-coding genes; none reached a
Bonferroni-adjusted significance threshold of 2.62 × 10−6.

For the cross-population meta-analysis of short sleep duration, in
a gene-based test, input SNPs for the short vs. normal analysismapped

Fig. 1 | Distributionof self-reported sleepduration inUKBiobankandMVP samples.Barshighlight theproportion of participantswho reported sleepingeachhour as a
percentage of the total sample. UK Biobank sample represented in light blue, MVP in dark blue.

Table 2 | Summary of SNP-heritability estimates (liability scale) for the AFR population, derived using LD scores calculated
using cov-LDSC, based on either UKB or MVP samples

SNP-h2 (SE); p-value Short sleep using UKB-derived
cov-LDSC scores

Short sleep using MVP-derived
cov-LDSC scores

Long sleep using UKB-derived
cov-LDSC scores

Long sleep using MVP-derived
cov-LDSC scores

UK Biobank only 0.018 (0.23); 0.94 0.050 (0.158); 0.75 −0.47 (0.58); 0.42 −0.94 (0.41); 0.022

MVP only 0.14 (0.05); 0.012 0.077 (0.031); 0.012 −0.12 (0.30); 0.69 −0.048 (0.20); 0.81

UKB +MVP meta-
analysis

0.088 (0.04); 0.039 0.075 (0.026); 0.0042 0.012 (0.19); 0.95 0.040 (0.12); 0.74
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Fig. 2 | A cross-population meta-analysis of UK Biobank and MVP, with loci
reaching a nominal threshold of 1 × 10−5 highlighted in green, and the red line
indicating genome-wide significance threshold of 5 × 10−8. TOP: short (≤5 h,

n = 62,516) versus normal (7–8 h, n = 412,944) sleep duration, with 28 independent
genetic-risk loci reaching genome-wide significance. BOTTOM: long (≥10 h,
n = 17,682) versus normal sleep duration with one genome-wide significant locus.

Fig. 3 | Gene-based test for short (top) and long (bottom) sleep duration in cross-populationmeta-analysis of UK Biobank and MVP cohorts. Bonferroni-adjusted
significance threshold p < 2.7 × 10−6 shown as the red line.
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to 18,914 protein-coding genes. Of these, 47 reached a Bonferroni-
adjusted significance threshold of 2.66 × 10−6. The top gene identified
was TCF4 (p = 53.11 × 10−12) (Fig. 3, Supplementary Data 18). For long
sleep duration, input SNPs for the long vs. normal analysis mapped to
18,903 protein-coding genes; none reached a Bonferroni-adjusted
significance threshold of 2.67 × 10−6 (Fig. 3, Supplementary Data 19).

Cross-population transferability of loci
Of the nominally significant (p < 1 × 10−5) loci in the short and long
sleep duration analyses in the AFR GWAS, none reached even a
nominal significance threshold of p < 0.05 in the EUR analysis, and
none demonstrate a lower p-value in the cross-population analysis.
Of the 46 independent loci for a short sleep in the EUR-only analysis,
41 remain significant in the cross-population analysis and 30 are
significant with a smaller p-value. The five loci that are no longer

genome-wide significant have a maximum p-value of 4.98 × 10−6

(Supplementary Data 17).
We performed cross-population lookups for the identified

ancestry-specific GWS loci across the summary statistics for EUR, AFR,
and EAS populations (Fig. 4, Supplementary Data 20). Of the 46 SNPs
that reached genome-wide significance in the EUR meta-analysis of
short sleep duration, 29 were present in the AFR summary statistics
and 19 of themhad adirectionof effect consistentwith the EUR results.
Three of these loci reached nominal significance of p <0.05
(rs12705972 on chromosome 7, p =0.012; rs2111216 on chromosome
12, p = 0.03; rs7313797 on chromosome 12, p =0.04).

In the EAS summary statistics, 27 of the EUR GWS loci were pre-
sent and 19 had a consistent direction of effect. Two of these loci
reached a nominal significance of p <0.05 (rs146618518 on chromo-
some 5, p =0.025; rs7313797 on chromosome 12, p = 0.026).

Fig. 4 | Cross-population replication analyses. Scatter plot for the z-score effect
sizes (error band representing 95% confidence intervals) for 46 genome-wide sig-
nificant loci from the EUR meta-analysis on short sleep on the y-axis against the

z-score effect sizes for the same loci inA EAS-onlymeta-analysis (ρ =0.290),BAFR-
only meta-analysis (ρ =0.293), and C AMR-only meta-analysis (ρ =0.398).
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Twenty-two of the 46 EUR GWS loci were present in both AFR and
EAS, and 10 of these had a consistent direction of effect across
populations.Of these 10, only one SNP reached nominal significance in
all three studies (rs7313797 on chromosome 12).

Rs62158206, the only SNP reaching genome-wide significance for
long sleep duration in the EUR meta-analysis, was present in both the
AFR (same direction of effect) and EAS summary statistics (opposite
direction of effect), but p > 0.05 in both cases.

Given the known differences in LD structure and allele frequency
across the population groups, we also considered all SNPs in high LD
(r2 > 0.6) with the GWS loci from the EUR meta-analysis of short sleep.
OneSNPwas successfullymatched to three SNPs inhighLD that reached
nominal significance in the AFR ancestry results (query SNP rs62144584,
matched to a total of 14 SNPs in the AFR population with p<0.05). The
majority (11 outof 14)of thesematchedSNPs showaconsistentdirection
of effect with the EUR results. Another SNP, rs201640077, was matched
to three SNPs in the EAS population that reached nominal significance,
with a consistent direction of effect (Supplementary Data 21).

Genetic correlation analysis
The within-phenotype genetic correlation between EUR participants
in UK Biobank and MVP cohorts is 0.84 (±0.05, p = 3.74 × 10−87) for
short sleep and 1.106 (±0.17, p = 1.31 × 10−10) for long sleep. For AFR,
the correlations were non-significant for short sleep and long sleep
could not be calculated for long sleep due to low sample sizes

(Supplementary Data 29). There was no significant cross-ancestry
genetic correlation between the EUR and AFR participants for either
short or long sleep (Supplementary Data 29).

We estimated a rg between short and long sleep of 0.16 (±0.04),
p = 2.0 × 10−4 in the EUR-only meta-analyses and −0.09 (±0.1), p = 0.72
in the AFR-onlymeta-analyses. Theweak genetic correlation in the EUR
sample suggests a distinct genetic architecture underlying the two
traits. The lack of significant genetic correlation between these traits in
the AFR sample may be due to lack of power, given the lower sample
size in this analysis (Supplementary Data 30).

LDSCanalysiswas conducted in theEURsampleonly (Fig. 5), due to
a lack of available comparator data for AFR participants. The traitsmost
strongly associated with both short and long sleep duration were years
of schooling (short: rg = −0.48 (0.02), p = 2.41 × 10−105; long: rg = −0.36
(0.03), p= 2.18 × 10−24) and sleep duration (as a continuous trait), with
directions of effect consistent with the definitions of short and long
sleep duration (short: rg = −0.76 (0.04), p =6.05 × 10−72; long: rg =0.39
(0.06), p = 1.99 × 10−11). In addition, short sleep duration was positively
correlated with attention deficit hyperactivity disorder (rg =0.53 (0.14),
p= 1.0 × 10−4) and negatively correlated to bipolar disorder (rg = −0.16
(0.04),p = 2.0 × 10−4). Long sleep durationwas also positively correlated
to schizophrenia (rg =0.30 (0.05), p = 1.58 × 10−10).

We observed several significant correlations between sleep
duration and cardiometabolic traits. For example, both short and long
sleep were positively correlated with coronary artery disease (short:

Fig. 5 | Summary of significant genetic correlations. Genetic correlations per-
formed between short (light blue) and long (dark blue) sleep duration and pre-
viously published GWAS results (EUR only). Data presented as rg (genetic

correlation) estimates and standard error. Significance determined following
Bonferroni correction for 40 tests; p < 1.25 × 10−3.
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rg = 0.23 (0.03), p = 1.8 × 10−12; long: rg = 0.23 (0.05), p = 2.6 × 10−5),
obesity (short: rg = 0.23 (0.04), p = 3.2 × 10−10; long: rg = 0.24 (0.05),
p = 4.2 × 10−7), and type 2 diabetes (short: rg = 0.20 (0.05),p = 1.0 × 10−4;
long: rg = 0.29 (0.07), p = 7.8 × 10−5). Additional significant (Bonferroni
correction for 40 independent traits; p < 1.25 × 10−3) correlations are
summarised in Fig. 5 and in Supplementary Data 31.

Mendelian randomisation
Exposure variables selected for MR analyses are listed in Supplemen-
taryData 32. Results that reached a significance threshold ofp <0.0125
(0.05 divided by four independent tests) were considered significant.

MR analysis investigating the causal influence of short sleep on
MDD supported a positive causal association between short sleep and
increased risk of MDD, using the inverse variance weighted method
(β =0.19 (0.02) p = 1.5x10−19, Fig. 6, Supplementary data 33). Con-
versely, MR on the impact of MDD on short sleep did not support a
causal association (β =0.01 (0.03), p =0.69). MR investigating the
causal influence of long sleep on MDD reveals a positive causal asso-
ciation between long sleep and increased risk of MDD, using the
inverse varianceweightedmethod (β =0.14 (0.03), p = 1.64 × 10−5). This
was a bidirectional effect, with an analysis of the impact of MDD on
long sleep also revealing evidence of a causal association (β =0.14
(0.04), p = 7.6 × 10−5).

MR analysis investigating the causal influence of short sleep on
schizophrenia showed no evidence of a causal association (Fig. 6,
Supplementary Data 33). Conversely, MR on the impact of schizo-
phrenia on short sleep did support a negative causal association
(β = −0.061 (0.01), p = 1.7 × 10−9). MR investigating the causal influence
of long sleep on schizophrenia reveals a positive causal association
between long sleep and increased risk of schizophrenia, using the

inverse varianceweightedmethod (β = 0.14 (0.03),p = 7.58 × 10−5). This
was a bidirectional effect, with an analysis of the impact of schizo-
phrenia on long sleep also revealing evidence of a causal association
(β =0.10 (0.01), p = 1.10 × 10−7).

The Egger-intercept was non-significant in three of four analyses
(long sleep againstMDD: Egger intercept −0.01 (0.009), p =0.18; MDD
against short sleep: Egger intercept 0.003 (0.005), p =0.62; MDD
against long sleep: Egger intercept −0.003 (0.006), p = 0.63). The
Egger intercept for short sleep against MDD was significant, (0.009
(0.003), p = 0.004), suggesting the inverse varianceweighted estimate
may be biased. We therefore repeated this analysis using a more
stringent p-value threshold for the exposure SNPs of 5 × 10−8. In this
case, the Egger intercept was non-significant (0.005 (0.012), p = 0.65);
the inverse variance weighted estimate remained significant (0.23
(0.046), p = 4.0 × 10−7). The Egger intercept was non-significant in all
four analyses of sleep and schizophrenia (short sleep against schizo-
phrenia: Egger intercept −0.01 (0.005), p =0.055; long sleep against
schizophrenia: Egger intercept −0.01 (0.009), p =0.194; schizophrenia
against short sleep: Egger intercept 0.002 (0.002), p = 0.35; schizo-
phrenia against long sleep: Egger intercept −0.002 (0.003), p = 0.50)
(Supplementary data 33).

Weighted median, MR-Egger, and MR-RAPS analyses were con-
ducted as sensitivity analyses. The weighted median regression and
MR-RAPS analyses were significant for MDD against long sleep, and
both short and long sleep against depression, following the same
pattern as observed using the inverse-variance weighted method.
These methods also yielded significant results for schizophrenia
against short and long sleep, but this was a uni-directional finding. In
the analyses with MDD, no MR-Egger tests survived multiple testing
corrections. In the analyses with schizophrenia, MR-Egger analyses

Fig. 6 | Effect estimates for the bi-directionalMendelian randomisation analyses between short and long sleep andMDD. The forest plots show the beta coefficient
and 95% confidence intervals for the association between exposures and outcomes using different MR methods.
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were significant for schizophrenia against short sleep and against
long sleep.

Discussion
The question of how to improve sleep quality and optimise sleep
duration is of constant interest, with the global market for sleep aids
and technologies exceeding 80 billion US dollars per year24. Along with
genetic influences, a wide variety of demographic, social, and environ-
mental factors can impact the quality and duration of sleep, including
socioeconomic status, stressful life events, home and neighbourhood
characteristics, work and school schedules, medication and substance
use, and mental and physical health conditions. Indeed, sleep quality
and duration can be considered both a risk factor for and symptom of
many health conditions.

We present a large GWAS of self-reported sleep duration con-
ducted for the first time in a diverse population. In addition to repli-
cating associations with many genes previously linked to sleep traits,
both in studies with overlapping samples and fully independent
cohorts, our analyses expand on the previous understanding of the
genetic architecture of sleep through the identification of numerous
novel risk loci for short sleep duration and one novel locus for long
sleep duration. We identify genes of interest in EUR, AFR, and cross-
population analyses. Our findings add to the existing knowledge of the
genetic basis of sleep duration, as well as highlighting at least one
ancestry-specific risk locus and shared genetic risk with a variety of
cognitive, neuropsychiatric, and metabolic traits.

We conducted a cross-populationmeta-analysis including all EUR,
AFR, EAS, and AMR cohorts from UK Biobank and MVP. We identified
84 independent GWS risk loci for short sleep duration. The strongest
associations were on chromosomes 7 (rs1989903, near FOXP2, and
7:2054314:C:CG, nearMAD1L1) and 18 (rs11152363, nearTCF4). FOXP2 is
a transcription factor that has been implicated in GWAS of insomnia,
BMI, cannabis use disorder, and risk-taking, as well as short sleep
duration7,10,16,25. MAD1L1 is a member of a family of genes that
encode proteins important in the mitotic checkpoint. This gene has
previously been associated with sleep and several psychiatric traits in
previous GWAS, including bipolar disorder, anxiety, PTSD, major
depressive disorder, and schizophrenia7,26–28. TCF4 is a transcription
factor that has previously been associated with cognitive traits, edu-
cational attainment, alcohol consumption, autism spectrum disorder,
schizophrenia, depression, lung function and BMI, as well as sleep
duration16,29–34.

The gene-based test identified 47 significant genes, with the
strongest association with TCF4. Several of these significant loci and
genes are the same as highlighted in EUR-only meta-analysis, which is
unsurprising given the relative sample sizes of each population group.
However, the increased number of genome-wide significant associa-
tions shows how the addition of these samples increased power and
added valuable information.

In the cross-population analysis of long sleep duration, we iden-
tified one GWS locus at rs9810253 on chromosome 3 (p = 1.24 × 10−8),
near PTPLB. This locus has a consistent direction of effect across all
primary studies, with p = 7.36 × 10−7 in the EUR-only analysis and 0.005
in the AMR analysis.

We conducted GWAS separately for individuals of EUR and AFR
ancestry before conducting a cross-population meta-analysis that
also incorporated EAS and AMR samples. In a GWAS of short vs.
normal sleep duration in the UK Biobank and MVP EUR samples, we
identified 46 independent GWS risk loci. The strongest associations
can be found on chromosome 7 (rs6466488, near FOXP2 and
rs111595851, near MAD1L1) and chromosome 4 (rs13107325, near
SLC39A8). In EUR, we identified one locus with compelling evidence
that it results in long sleep duration. The strongest associationwas at
rs62158206 on chromosome 2. This SNP is intergenic to PAX8, which
encodes a transcription factor that has previously been associated

with several sleep-related phenotypes, including insomnia (with a
consistent and opposite direction of effect)16,17 and sleep disturbance
in depression35. In addition, this gene has been highlighted in several
previous GWAS on sleep duration, both in fully independent and
overlapping samples7,8.

SNP-based heritability of short sleep duration was 11.9%
(p = 2.45 × 10−115). Long sleep duration appeared less heritable, with an
SNP-based heritability of 7.8% (p = 1.61 × 10–20). Both estimates are
broadly consistent with previously published results7,8. The significant
difference in the number of significant loci for long sleep compared to
short sleep may be in part a result of this lower heritability, perhaps
suggesting a greater influence of environmental factors on longer
sleep duration; but lower power based on sample size may have been
decisive for both measures (risk loci and observed heritability). There
were also fewer long sleepers (≥10 h) in both the UK Biobank andMVP
cohorts compared to short sleepers (≤5 h) and the effect estimates
for the top associations were of comparable magnitude, indicating
decreased power for the analysis.

Amongst AFR participants, we identified one risk locus, at
rs148926968 on chromosome 13 associatedwith long sleep. This locus
is intergenic for LMO7, which has been previously identified in GWAS
of obsessive-compulsive disorder36, several age-related diseases
including hearing loss37 and Alzheimer’s disease38, and several cross-
population GWAS on eyesight-related traits39,40. We did not observe
any genome-wide significant loci for short sleep duration in the AFR
sample. Additional analyses in larger cohorts are required to under-
stand the extent to which this might reflect differing genetic archi-
tecture in AFR compared to EUR, or if this is more a result of reduced
power given the smaller sample size. In AFR, we found significant SNP-
based heritability for short sleep duration (8.2%, p =0.04), but not for
long sleepduration. There arenopriorpublishedh2 estimates for sleep
duration in individuals of AFR. Given the lower observed heritability of
long sleep in EUR, we suspect that the sample size included here is too
small to confirm heritability in AFR.

Due to the limited GWS findings in the non-EUR analyses, we
performed cross-population lookups in the EUR meta-analysis of UK
Biobank and MVP cohorts. Of the 46 GWS loci in this EUR study, 22
were also present in the AFR and EAS meta-analysis, and 10 had a
consistent direction of effect across all three populations. Of these
ten, only one reached at least nominal significance in all populations:
rs7313797 on chromosome 12. This SNP is intronic to KCTD10, which
has previously been identified in GWAS of neurotic disorder, well-
being, coronary artery disease, and HDL cholesterol levels41–44.

Our results do not support a significant genetic correlation
between the EUR and AFR samples for either short or long sleep,
though these analyses are hindered by small sample sizes in the AFR
population. We do find some evidence for portability across popula-
tions, as highlighted in Fig. 4, but future analysis in additional non-EUR
datasets and in a larger AFR sample should help clarify the extent of
genetic overlap and aid the identification of truly causal variants.

The genetic correlation between short and long sleep was low,
with rg = 0.16 (p = 0.0002) in EUR and a non-significant correlation in
AFR, due to the smaller sample size. Larger samples are necessary to
further evaluate the relationship of these sleep traits in non-
European populations. Nevertheless, the result of the EUR analysis
confirms our hypothesis that these traits, though clearly phenotypi-
cally related, possess distinct underlying genetic architecture and
biology. There are notable similarities for some traits significantly
correlated with both short and long sleep, such as depression, can-
nabis use disorder, PTSD, coronary artery disease, obesity, and dia-
betes. This indicates that an increased genetic risk for a range of traits
is associated with an increased risk of sleep disturbance at either end
of the spectrum, perhaps depending on the specific variants at play.
In addition, short and long sleep were both significantly positively
correlated with insomnia. Localised genetic correlation analyses may
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be valuable in establishing if these shared patterns of rg are in fact
driven by the same loci45.

There is significant evidence, genetic and otherwise, of high
comorbidity between disturbed sleeping and a variety of neu-
ropsychiatric, cognitive, and metabolic traits. Short and long sleep
duration has been associated with all-cause mortality and decreased
life expectancy. The results of the genetic correlation analyses in LDSC
provide support for these observations and confirm that some of this
comorbidity can be explained by shared genetic risk.

The MR analyses found a directional causal influence of short
sleep duration resulting in an increased risk ofMDD.We also identified
evidence of a bi-directional causal relationship between long sleep
duration and MDD. Many previous studies have identified phenotypic
associations between sleep duration and MDD or depressive
symptoms46–50, but the causal direction of these associations has not
always been clear. The findings from the present analyses, that both
short and long sleep duration can cause an increased risk of MDD,
support existing theories on the importance of healthy sleep patterns
for mood regulation and highlight shared genetic risk factors between
the two extremes. We demonstrate a negative causal association
between schizophrenia and short sleep and a positive causal associa-
tion between schizophrenia and long sleep duration. There is evidence
of a bidirectional causal association between schizophrenia and long
sleep, but not short sleep.

We considered hours of daylight exposure as a potential envir-
onmental factor impacting variance in sleep duration. In the UK Bio-
bank sample, wherewewere able to considermonthly solar irradiation
data, higher levels of estimated solar irradiation were significantly
associated with shorter reported sleep duration. In the MVP sample,
where we assessed annual irradiation only, increased solar irradiation
was not significantly associated with sleep duration. Independently of
solar irradiation levels, we found that the month of recruitment was
significantly associated with sleep duration.

It is possible that the use of annual data only in the MVP sample
may be limiting our ability to detect an effect; the large variation in
daylight exposure across the year cannot be captured by annual data.
However, there are other significant differences between the cohorts
that could contribute to these findings, and the question on sleep
duration in both UK Biobank and MVP was phrased such as to ask for
habitual sleep patterns. Our data suggests solar irradiation is a sig-
nificant influence, however, longitudinal data recording sleep patterns
over the course of several years will be valuable in determining the full
extent of the impact of hours of daylight on sleep duration.

Reliance on self-reported sleep data is a limitation. However, a
previous study in the UK Biobank demonstrated a high level of con-
sistency between the top variants identified in a GWAS of self-report
sleep duration data and those seen in a study of 85,499 subjects using
wrist-worn accelerometer data7. Both cohorts included predominantly
older adults, where sleep disturbance (particularly short sleep) ismore
commonandwhile this increases thepower of the analyses intended, it
limits our ability to generalise findings to younger groups. A further
limitation is the underrepresentation of non-European populations.
Although wewere able to include four population groups in the cross-
population meta-analysis, many post-GWAS analyses were conducted
in EUR and AFR ancestry groups only, and some of the methods used
are less reliable in population groups with higher levels of admixture.

In summary, we have identifiedmultiple novel variants of GWS for
short sleep duration, and one novel locus for long sleep duration,
among UK Biobank and MVP cohorts. Several of these loci and genes
warrant future investigation in populations of greater age, sex, and
ancestral diversity. Genetic correlations provided support for shared
genetic risk between sleep duration and a range of comorbid traits and
MR analysis supports a causal association between sleep duration and
depression. These findings highlight the value of understanding the
genetic basis of sleep patterns in order to improve public health.

Methods
Inclusion and ethics statement
This research was not restricted or prohibited in the setting of any of
the included researchers. UK Biobank was approved by a UK ethics
review committee. MVP was approved by the Veterans Affairs central
IRB. We do not believe our results will result in stigmatisation, incri-
mination, discrimination, or personal risk to participants.

Participants
The UK Biobank andMVP cohorts are described in detail in refs. 19–21.
The UK Biobank study was approved by the North-West Research
Ethics Committee (ref 06/MREC08/65) in accordance with the
Declaration of Helsinki. Research involving the MVP in general is
approved by the VACentral Institutional ReviewBoard. All participants
in both cohorts provided written informed consent.

Genotyping, imputation, and quality control
UK Biobank. Genotyping and imputation of UK Biobank subjects are
described in detail in ref. 19. Briefly, genotyping for UK Biobank par-
ticipants was undertaken using the Affymetrix UK BiLEVE Axiom array
(used for thefirst ~50,000participants) and theAffymetrixUKBiobank
Axiom Array (~450,000 participants)19. These arrays are >95% similar
and include ~820,000 SNP and indel markers (http://www.ukbiobank.
ac.uk/). Quality control and imputation of over 90million SNPs, indels
and large structural variants were performed centrally19. Samples
identified as outliers for heterozygosity and/or missingness were
removed, leaving a total sample of 487,411. The fully imputed genetic
data used in this study, with basic sample and variant level quality
control as reported in ref. 19, were made available in March 2018.

Additional local post-imputation SNP-level quality control was
conducted to remove SNPs with an imputation INFO score <0.3 or
those withminor allele frequency (MAF) < 0.01. This filtering was done
separately in each ancestry group to ensure that population-specific
variantswerenot removed. Further individual-level quality controlwas
conducted locally to remove samples with mismatch between repor-
ted sex and genetically inferred sex (due to risk of sample processing
errors) and those with excessive genetic relatedness (>10 third-degree
relatives based on kinship calculations provided centrally by UK Bio-
bank). Individuals missing either sleep or essential quality data were
excluded. The final list was then checked to remove those who had
withdrawn consent.

Genetic ancestry of the UK Biobank sample was assessed using
principal component analysis (PCA) in combination with self-reported
ethnicity data. A list of 409,728 EUR individuals was identified centrally
by the UK Biobank19. Further local analysis was conducted to delineate
the ancestry of another 77,683 participants from diverse populations,
applying the same thresholds as described in ref. 19. Two rounds of
PCA were performed using the PC-AiR algorithm51, which captures
population structure. Relatedness in this sample was assessed using
PC-Relate and the ancestry representative PCs52. Of the samples that
passed the QC procedures described here, over 99% provided self-
reported sleep duration data.

MVP. Genotyping and imputation of MVP participants have been
described previously21. Briefly, MVP subjects were genotyped using a
customised Affymetrix Axiom Array, similar to the UK Biobank array.
MVP genotype data were imputed using Minimac4 and a reference
panel from the African Genome Resources (AGR) panel by the Sanger
Institute. Indels and complex variants were imputed independently
from the 1000 Genomes phase 3 panel (G1K) and merged in a similar
approach to UKB HRC +UK10K. SNPs with an imputation info score
< 0.3, estimated genotype hard call missingness rate of >0.2,
or an MAF < 0.001 were removed. PCA was conducted using
Eigensoft53. Genetic ancestry of the MVP participants was assigned
separately within each data tranche, based upon the first 10 principal
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components, with 1000 Genomes Project (phase 3) EUR, African
(AFR), Admixed American (AMR) and East Asian (EAS) data as refer-
ence samples21.

Phenotypic assessment and covariate measures
In both cohorts, we selected participants who had provided self-
reported data on sleep duration. In UK Biobank, participants were
asked “About how many hours sleep do you get in every 24 h? (please
include naps)” as part of the baseline assessment. Responses were
given in hour increments and participants who claimed to sleep less
than three hours or more than 12 were prompted to confirm their
answer. In theMVP, data on sleepdurationwas collected from theMVP
lifestyle questionnaire, where participants were asked “How many
hours do you usually sleep each day (24-h period)?”. The response
options were multiple choice: 5 or less, 6, 7, 8, 9 or 10 or more.

We did not wish to assume that short and long sleep are neces-
sarily on the same biological continuum, and therefore defined sepa-
rate phenotypes rather than reconciling the differing UK Biobank and
MVP ordinal traits. We defined ‘short’ sleep duration as ≤5 h sleep,
‘normal’ as 7–8h and ‘long’ as ≥10 h54.

In both UK Biobank and MVP samples we included sex, age at
recruitment, and the first 10 principal components as covariates in the
GWAS. In the UK Biobank sample, the genotyping array used was
included as an additional covariate. We found that individuals who
reported being diagnosed with obstructive sleep apnoea were sig-
nificantly over-represented in both the short and long-sleep groups,
and we, therefore, excluded these participants from our analysis in
both the UK Biobank and MVP cohorts.

Although the ‘normal’ or medium sleepers (7–8h) represent the
largest group in both samples and the distribution of responses is
similar, the MVP sample has a significantly greater proportion of both
short and long sleepers (Fig. 1). UKBiobank is a population-based study,
and differences between the sample and the UK population have been
described in ref. 55; this could also relate to how the phenotype was
elicited. MVP recruits through the US Department of Veterans Affairs
(VA) Healthcare System, meaning these participants can be considered
a patient population with a broad range of potential health conditions,
some of which can be expected to impact sleep duration.

Hours of daylight exposure
Weevaluated the possible effects of hours of daylight on sleep hours, as
this is known tohavea significant impacton reported sleepduration56–59.
We calculated the estimated solar irradiance for each participant based
on the location of their recruitment site.Wedownloadedmonthly direct
normal solar irradiation data from the European Commission Photo-
voltaic Geographical Information System60 and the National Solar
Radiation Database61. For UK Biobank subjects, solar irradiation indices
were based on the recruitment site and the month of their recruitment.
For MVP subjects, only average annual data were available. We con-
ducted a linear regression analysis to examine the effects of solar irra-
diance on sleep hours, including age and sex as covariates. This analysis
was conducted using R version 3.5.0 (2018-04-23)62.

Statistical analyses
We conducted GWAS on two separate phenotypes, short sleep dura-
tion vs. normal and long sleep duration vs. normal, in each of the
independent primary samples (UKB-EUR, UKB-AFR, UKB-EAS, UKB-
AMR, MVP-EUR, MVP-AFR, MVP-AMR. GWAS analysis was conducted
by logistic regression using PLINK 2.0 on genotype dosage data,
including age, sex, andfirst 10 principal components as covariates, and
in the case of UK Biobank the genotype array as covariates63. Where
kinship scores showed a relatedness between a pair as closer than the
2nd degree, one of each of the pairs was excluded. Where both pair
members were cases or both were controls, the excluded participant
was chosen at random.Whereonepairmemberwas a case andonewas

a control, the control participant was excluded to maximise the case
sample size.

We used METAL64 to conduct independent fixed effect meta-
analyses in ancestry-specific samples and to conduct a cross-population
meta-analysis using all primary GWAS from UK Biobank and MVP. The
resulting summary statistics were filtered to remove any SNP that did
not appear across all four population groups, in either UK Biobank or
MVP data. For each primary GWAS, meta-analysis and cross-population
meta-analysis, we calculated LD intercept to assess genomic inflation
due to sample size and polygenicity of trait65. Manhattan and
quantile–quantile (Q–Q) plots were created using the R packages
ggplot2 and Hudson62,66. Independent GWAS signals were identified
through clumping of results with an r2 of 0.6. A second clumping of the
independent SNPs was performed with r2 of 0.1 to identify lead SNPs67.

In addition to these primary studies, we repeated our analyses of
long and short sleep duration in a sex-stratified UKB cohort, and in a
sub-sample of theUKB cohort excluding nightshift workers. Finally, we
conducted a case-case comparison comparing long vs. short sleep in
both UKB and MVP. Further detail on these analyses is provided in the
Supplementary material sections 2, 3, 4 and Supplementary Data 34
and 35. We used the EUR MVP GWAS to provide an independent
replication sample for previously published GWAS assessing self-
reported sleep duration as both a binary and quantitative trait in
446,118 European UK Biobank subjects7. See Supplementary Material
Section 7 and Supplementary Data 36–41.

Functional annotation and gene-based tests
We uploaded summary statistics from the primary GWAS and the
meta-analyses into the functional mapping and annotation (FUMA)
GWAS platform version 1.3.7 to annotate GWAS data67. Default settings
were used, including using all 1000 genome project (1KG) reference
populations for the cross-populationmeta-analyses (1KG EUR and AFR
used for the EUR and AFR GWAS, respectively). SNPs were mapped
according to chromosomal position based on ANNOVAR annotations,
with a maximum distance of 10 kb between SNPs.

We examined gene-level associations using Multi-Marker Analysis
of GenoMic Annotation (MAGMA) version 1.6, using default settings67.
SNPs were assigned to genes based on Ensembl build 85, and the
association with each sleep phenotype was calculated as a combined
gene test statistic based on the individualp-values of the SNPsmapped
to a given gene. The significance threshold was calculated using a
Bonferroni multiple testing correction to account for the specific
number of protein-coding genes in each gene-based test.

Transcriptome-wide association study and fine-mapping
SNP-level fine-mapping was conducted using PolyFun (POLYgenic
FUNctionally-informed fine-mapping)68. PolyFun calculates per-SNP
heritability for each variant in provided summary statistics, which is
proportional to prior causal probability. We used these per-SNP her-
itability estimates alongwith downloaded functional annotations from
The Broad Institute (functional annotation for ~19 million UK Biobank
SNPs with MAF >0.1%, based on the baseline-LF model described in
ref. 69) to conduct functionally-informed fine-mapping using Sum of
Single Effects (SuSiE)70. We extracted annotations for all SNPs with
posterior inclusion probability (PIP) ≥0.95. We then estimated func-
tional enrichment using S-LDSC (stratified LD-score regression)65,71

using pre-calculated weights, and the resulting annotations were
ranked (see Supplementary Data 22, 23).

We conducted a transcriptome-wide association study (TWAS)
using FUSION72, which integrates GWAS summary statistics and gene-
expression data to identify gene expression patterns associated with
long or short sleep duration. We performed expression imputation
for autosomes using GTEx v8 multi-tissue expression weights
from 49 tissues. As loci could be associated with multiple features,
we identified genes that were conditionally independent, using the
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‘FUSION.post_process.R’ script provided, which reads expression
weights for selectedgenes and consolidates them intooverlapping loci
(described further at http://gusevlab.org/projects/fusion/)72. Based
on 49 tissues and 27,977 Ensembl Gene IDs (representing genes, non-
coding transcripts, and pseudogenes) we applied a multiple testing
correction for significance at p-value ≤ 3.65 × 10−8 (0.05/(49*27,977).
Where a genewas significant and expressed in two tissues, we selected
the gene expression with the lowest p-value (see Supplementary
data 24, 25).

We then used Fine-mapping Of CaUsal gene Sets (FOCUS)73 to
fine-map genomic risk regions identified through the TWAS using pre-
computed expression quantitative trait loci (eQTL) weights from a
multi-tissue, multiple eQTL reference database which combines
GTExv7 weights from PrediXcan, Metabolic Syndrome in Men Study
(METSIM), Netherlands Twin Registry (NTR), Young Finns Study (YFS),
and CommonMind Consortium (CMC). LD scores were obtained from
1000 Genome Phase 3. We filtered results based on a PIP threshold of
≥0.774 (see Supplementary data 26, 27).

Ingenuity pathways analysis
We performed a Core Analysis using Ingenuity Pathway Analysis
software75. Gene lists came from the MAGMA analysis. A 0.05 false
discovery rate was applied to the MAGMA output from the cross-
populationmeta-analysis for short and long sleep, yielding lists of 380
and 0 genes, respectively. Because no genes survived the initial cor-
rection a second cut-off of 0.10 was applied to the long sleep analysis,
with 18 genes surviving this less restrictive cut-off (see Supplementary
Data 28).

Cross-population transferability of loci
There is often only limited overlap in genome-wide significant (GWS)
risk loci across population groups. Differences in LD structure and
allele frequency among population groups make it difficult to deter-
mine if an observed association from a primarily European study is
replicated in other populations, as the truly causal variant is often
unknown76. Using the R package LDlinkR77 we developed ‘credible sets’
of SNPs in EAS and AFR populations that are in high LD (r2 > 0.6) with
the GWS loci from the European analysis of short and long sleep
duration. We then searched the UK Biobank/MVP short and long sleep
meta-analyses results for EAS and AFR populations for evidence of
association (p <0.05).

Genetic correlation and SNP-based heritability
We used linkage disequilibrium score regression (LDSC) to estimate
SNP-based heritability. For the EUR sample, we used reference LD
scores providedby the 1000Genomes Project78. The high admixture in
the AFR samplemeans that the referencepanel datamaybe unreliable.
We therefore used LD scores calculated from the primary genotype
data with principal components included as covariates. For the UK
Biobank sample, weused the scores publishedby the Pan-UKBBgroup.
For the MVP sample, we used the equivalent cov-LDSC method
(described in ref. 79, https://github.com/immunogenomics/cov-ldsc).

Converting the observed SNP-heritability to the liability-scale esti-
mates presented here required an estimation of the population pre-
valence of ‘cases’ (i.e., short or long sleepers).We based these estimates
on the proportion of short and long sleepers in themeta-analysis of UK
Biobank and MVP data. These estimates were weighted based on the
sample size of the primary studies. Due to observed differences in the
distribution of sleep duration, we calculated these estimates separately
in the EUR and AFR populations. A higher proportion of AFR subjects
report sleeping six hours or less, and a smaller proportion of AFR sub-
jects report sleeping seven, eight, or nine hours, compared to EUR. In
the EUR cohort, this resulted in an estimated population prevalence (K)
of 0.11 for short and K =0.04 for long sleep. In the AFR cohort, this
resulted in a K =0.43 for short and K =0.05 for long sleep.

For the EUR cohort, we used LDSC to calculate the genetic cor-
relation between sleep duration and a range of cognitive, neu-
ropsychiatric, cardiac, and metabolic traits65,80,81. We used LDHub
to assess the genetic correlation of short and long sleep to all
available traits. In addition, we used LDSC to assess the genetic cor-
relation to traits based upon GWAS summary statistics downloaded
from the Psychiatric Genomics Consortium (PGC) website
(https://www.med.unc.edu/pgc/results-and-downloads/) and from
the Sleep Disorder Knowledge Portal (http://www.kp4cd.org/
dataset_downloads/sleep).

Finally, we assessed the genetic correlation between short and
long sleep duration based upon the summary statistics for the meta-
analyses as described above, using LDSC for the within-ancestry
analyses65 and Popcorn (version 0.9.6: https://github.com/brielin/
Popcorn) for the cross-population analyses82.

Mendelian randomisation (MR)
We conducted two-sample MR of both short and long sleep duration
using summary statistics for MDD and schizophrenia from the Psy-
chiatric Genomics Consortium29,30,83,84, using the TwoSampleMR
package in R30,85. The genetic instruments for all traits were defined as
the independent variants that reached a significance threshold of
p < 1 × 10−5. Independent associations were identified by LD clumping
with r2 = 0.6 and awindowof 250kb. To avoid sample overlap, weused
PGC data excluding UK Biobank samples.

We used the inverse-variance weighted (IVW) method as our pri-
mary MRmodel. We also conducted MR-Egger, weighted median, and
weighted mode analyses to test for horizontal pleiotropy and poten-
tially invalid genetic instruments86,87. MR-robust associated profile
score (MR-RAPS) was conducted as a further sensitivity analysis to
account for potential weak instrument bias or extreme outliers88. MR
analyses were conducted in EUR samples only.

Calculation of the Egger intercept can identify directional pleio-
tropy which can bias the inverse variance estimates. Where there is
directional pleiotropy, the MR-Egger analysis may provide a more
reliable effect estimate. Where the Egger-intercept is non-significant,
this demonstrates a lack of directional horizontal pleiotropy and
provides confidence in the estimates using the inverse variance
method. If we identified a significant Egger intercept, we repeated the
analyses using only genome-wide significant SNPs (p < 5 × 10−8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics for the GWAS and meta-analyses generated in
this study have been deposited in dbGAP under accession number
phs001672.v1.p1 and are also available on the Gelernter Lab website
(https://medicine.yale.edu/lab/gelernter/stats/). The raw genotype
data is available through UK Biobank (http://biobank.ndph.ox.ac.uk/
showcase/). Data from the European Commission Photovoltaic Geo-
graphical Information System can be accessed here: https://re.jrc.ec.
europa.eu/pvg_tools/en/. Data from the National Solar Radiation
Database can be accessed here: https://nsrdb.nrel.gov/data-sets/how-
to-access-data.
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