527 research outputs found

    Influence of Selenium: Lemire et al. Respond

    Get PDF

    Sustainable risk management of emerging contaminants in municipal wastewaters

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.The presence of emerging contaminants in municipal wastewaters, particularly endocrine-disrupting compounds such as oestrogenic substances, has been the focus of much public concern and scientific attention in recent years. Due to the scientific uncertainty still surrounding their effects, the Precautionary Principle could be invoked for the interim management of potential risks. Therefore, precautionary prevention risk-management measures could be employed to reduce human exposure to the compounds of concern. Steroid oestrogens are generally recognized as the most significant oestrogenically active substances in domestic sewage effluent. As a result, the UK Environment Agency has championed a ‘Demonstration Programme’ to investigate the potential for removal of steroid oestrogens and alkylphenol ethoxylates during sewage treatment. Ecological and human health risks are interdependent, and ecological injuries may result in increased human exposures to contaminants or other stressors. In this context of limiting exposure to potential contaminants, examining the relative contribution of various compounds and pathways should be taken into account when identifying effective risk-management measures. In addition, the explicit use of ecological objectives within the scope of the implementation of the EU Water Framework Directive poses new challenges and necessitates the development of ecosystem-based decision tools. This paper addresses some of these issues and proposes a species sensitivity distribution approach to support the decision-making process related to the need and implications of sewage treatment work upgrade as risk-management measures to the presence of oestrogenic compounds in sewage effluent

    Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC

    Get PDF
    Alicycliphilus denitrificans strain BC grows anaerobically on acetone with nitrate as electron acceptor. Comparative proteomics of cultures of A. denitrificans strain BC grown on either acetone or acetate with nitrate was performed to study the enzymes involved in the acetone degradation pathway. In the proposed acetone degradation pathway, an acetone carboxylase converts acetone to acetoacetate, an AMP-dependent synthetase/ligase converts acetoacetate to acetoacetyl-CoA, and an acetyl-CoA acetyltransferase cleaves acetoacetyl-CoA to two acetyl-CoA. We also found a putative aldehyde dehydrogenase associated with acetone degradation. This enzyme functioned as a -hydroxybutyrate dehydrogenase catalyzing the conversion of surplus acetoacetate to -hydroxybutyrate that may be converted to the energy and carbon storage compound, poly--hydroxybutyrate. Accordingly, we confirmed the formation of poly-?-hydroxybutyrate in acetone-grown cells of strain BC. Our findings provide insight in nitrate-dependent acetone degradation that is activated by carboxylation of acetone. This will aid studies of similar pathways found in other microorganisms degrading acetone with nitrate or sulfate as electron acceptor.This work was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO) [project 08053]. Additional funding was provided by BE-BASIC [grant F08.004.01 to SA], an ERC grant [project 323009 to AJMS] and the Gravitation grant [project 024.002.002 to AJMS] of the Netherlands Ministry of Education, Culture and Science and NWO

    Scientific Opinion on the safety and efficacy of vitamin D<sub>3</sub> (cholecalciferol) as a feed additive for all animal species or categories based on a dossier submitted by Lohmann Animal Health GmbH

    Get PDF
    The principal physiological role of vitamin D in all vertebrates is in calcium and phosphorus homeostasis. The classic clinical deficiency syndrome is rickets. The FEEDAP Panel notes that for turkeys for fattening, equines, bovines, ovines and pigs the maximum authorised content of vitamin D3 in feed does not provide any margin of safety, and that, except for pigs and fish, the maximum content is above the upper safe level, according to National Research Council data when animals were fed a supplemented diet for more than 60 days. The FEEDAP Panel is not in a position to draw final conclusions on the safety of vitamin D for target animals but considers the current maximum contents temporarily acceptable pending a review of the recent scientific literature. The two vitamin sources under application are considered safe for the target animals provided the current maximum contents in feed are respected. Any administration of vitamin D3 via water for drinking could exceed the safe amounts of vitamin D and therefore represents a safety concern. Current nutritional surveys in 14 European countries showed that vitamin D intake is below the upper safe limit. The FEEDAP Panel assumes that foodstuffs of animal origin were produced following current production practices, including vitamin D3 supplementation of feed, and concludes that the use of vitamin D in animal nutrition at the currently authorised maximum dietary content has not and will not cause the tolerable upper intake level to be exceeded. Vitamin D3 should be considered as irritant to skin and eyes, and as a dermal sensitiser. Inhaled vitamin D3 is highly toxic; exposure to dust is harmful. No environmental risk resulting from the use of vitamin D3 in animal nutrition is expected. The vitamin D3 under application is regarded as an effective dietary source of the vitamin in animal nutrition

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013 . Scientific opinion on Dietary Reference Values for fluoride

    Get PDF
    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) derived Dietary Reference Values (DRVs) for fluoride, which are provided as Adequate Intake (AI) from all sources, including non-dietary sources. Fluoride is not an essential nutrient. Therefore, no Average Requirement for the performance of essential physiological functions can be defined. Nevertheless, the Panel considered that the setting of an AI is appropriate because of the beneficial effects of dietary fluoride on prevention of dental caries. The AI is based on epidemiological studies (performed before the 1970s) showing an inverse relationship between the fluoride concentration of water and caries prevalence. As the basis for defining the AI, estimates of mean fluoride intakes of children via diet and drinking water with fluoride concentrations at which the caries preventive effect approached its maximum whilst the risk of dental fluorosis approached its minimum were chosen. Except for one confirmatory longitudinal study in US children, more recent studies were not taken into account as they did not provide information on total dietary fluoride intake, were potentially confounded by the use of fluoride-containing dental hygiene products, and did not permit a conclusion to be drawn on a dose-response relationship between fluoride intake and caries risk. The AI of fluoride from all sources (including non-dietary sources) is 0.05 mg/kg body weight per day for both children and adults, including pregnant and lactating women. For pregnant and lactating women, the AI is based on the body weight before pregnancy and lactation. Reliable and representative data on the total fluoride intake of the European population are not available
    corecore