853 research outputs found

    Microtesla MRI of the human brain combined with MEG

    Full text link
    One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method - SQUID-based microtesla MRI - can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microtesla measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment - low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging - are practical.Comment: 8 pages, 5 figures - accepted by JM

    Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    Get PDF
    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies

    The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit

    Get PDF
    A CP-even neutral Higgs boson with Standard-Model-like couplings may be the lightest scalar of a two-Higgs-doublet model. We study the decoupling limit of the most general CP-conserving two-Higgs-doublet model, where the mass of the lightest Higgs scalar is significantly smaller than the masses of the other Higgs bosons of the model. In this case, the properties of the lightest Higgs boson are nearly indistinguishable from those of the Standard Model Higgs boson. The first non-trivial corrections to Higgs couplings in the approach to the decoupling limit are also evaluated. The importance of detecting such deviations in precision Higgs measurements at future colliders is emphasized. We also clarify the case in which a neutral Higgs boson can possess Standard-Model-like couplings in a regime where the decoupling limit does not apply. The two-Higgs-doublet sector of the minimal supersymmetric model illustrates many of the above features.Comment: 54 pages, 2 tables, revtex4 format, some new material added (including elegant forms for the three-Higgs and four-Higgs couplings) and typographical errors fixe

    Constraining Supersymmetry

    Get PDF
    We review constraints on the minimal supersymmetric extension of the Standard Model (MSSM) coming from direct searches at accelerators such as LEP, indirect measurements such as b -> s gamma decay and the anomalous magnetic moment of the muon. The recently corrected sign of pole light-by-light scattering contributions to the latter is taken into account. We combine these constraints with those due to the cosmological density of stable supersymmetric relic particles. The possible indications on the supersymmetric mass scale provided by fine-tuning arguments are reviewed critically. We discuss briefly the prospects for future accelerator searches for supersymmetry.Comment: 21 LaTeX pages, 9 eps figures, Invited Contribution to the New Journal of Physics Focus Issue on Supersymmetr

    Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays

    Full text link
    We consider multi-messenger constraints on very heavy dark matter (VHDM) from recent Fermi gamma-ray and IceCube neutrino observations of isotropic background radiation. Fermi data on the diffuse gamma-ray background (DGB) shows a possible unexplained feature at very high energies (VHE), which we have called the "VHE Excess" relative to expectations for an attenuated power law extrapolated from lower energies. We show that VHDM could explain this excess, and that neutrino observations will be an important tool for testing this scenario. More conservatively, we derive new constraints on the properties of VHDM for masses of 10^3-10^10 GeV. These generic bounds follow from cosmic energy budget constraints for gamma rays and neutrinos that we developed elsewhere, based on detailed calculations of cosmic electromagnetic cascades and also neutrino detection rates. We show that combining both gamma-ray and neutrino data is essential for making the constraints on VHDM properties both strong and robust. In the lower mass range, our constraints on VHDM annihilation and decay are comparable to other results; however, our constraints continue to much higher masses, where they become relatively stronger.Comment: 33 pages, 21 figures, accepted for publication in JCA

    Dataset of characteristic remanent magnetization and magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform)

    Get PDF
    This data article describes data of magnetic stratigraphy and anisotropy of isothermal remanent magnetization (AIRM) from "Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system" [1]. Acquisition of isothermal magnetization on pilot samples and anisotropy of isothermal remanent magnetization are reported as raw data; magnetostratigraphic data are reported as characteristic magnetization (ChRM).info:eu-repo/semantics/publishedVersio
    corecore