42 research outputs found

    Pharmacodynamic sof L-Asparaginase in Childhood Acute Leukemia

    Get PDF
    The 'Three Princes of Serendip' is an old Persian fairytale about three men who were on a mission and encountered things that looked irrelevant at first sight but which turned out to be important later on. They discovered things by serendipity and sagacity. Serendip is the Persian name for Sri Lanka. In 1754 Horace Walpole coined the word serendipity. One of the founders of pediatric oncology GiulioD'Angio pointed to this fable when he analyzed the discovery of treatment tools in pediatric oncology. It has often happened that serendipitous observations lead to a break-through in quite another field. This story includes the discovery of L-Asparaginase: The enzymatic deamination of asparagine was already studied by Clementi in 1922. In 1952 Kidd discovered that the injection of guineapig serum inhibited the growth of murine lymphomas. His experiments indicated that a protein was responsible for the antilymphoma activity. In 1956, Neuman and McCoy showed that Walker carcinoma tissuecultures had an absolute requirement for asparagine. It took until 1961 before an explanation was found for these observations: Broome, working in Kidd's laboratory, presented evidence that the enzyme L-Asparaginase was responsible for the antitumor activity of guineapig serum. An effective drug was discovered by serendipity

    Impaired dexamethasone-related increase of anticoagulants is associated with the development of osteonecrosis in childhood acute lymphoblastic leukemia

    Get PDF
    Coagulation alterations may be involved in osteonecrosis in childhood acute lymphoblastic leukemia. Retrospectively, we evaluated the available coagulation parameters at diagnosis and during induction treatment of 161 acute lymphoblastic leukemia patients: 24 with symptomatic osteonecrosis (median age: 13.8 years, range 4.0-17.2) and 137 without osteonecrosis (median age: 4.9 years, range 1.0-16.7). Coagulation parameters of both groups were similar at diagnosis. After four weeks of treatment including dexamethasone, levels of antithrombin and protein S were significantly less in osteonecrosis-positive than in osteonecrosis-negative patients. Subsequently, after four doses of asparaginase and tapering dexamethasone, these coagulation parameters equally decreased in both groups. Consequently, nadirs of antithrombin and protein S were significantly lower in osteonecrosis-positive than in osteonecrosis- negative patients, even reaching levels below lower normal limits in the osteonecrosis-positive group. A reduced dexamethasone related increase of antithrombin and protein S, and subsequent decline below normal levels after introduction of asparaginase, may result in a hypercoagulable state, contributing to development of symptomatic osteonecrosis

    Multiscale Multimodal Characterization and Simulation of Structural Alterations in Failed Bioprosthetic Heart Valves.

    Get PDF
    Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves may serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context, hence providing design cues for improved bioprosthetic valve alternatives

    Multiscale multimodal characterization and simulation of structural alterations in failed bioprosthetic heart valves

    Get PDF
    Calcific degeneration is the most frequent type of heart valve failure, with rising incidence due to the ageing population. The gold standard treatment to date is valve replacement. Unfortunately, calcification oftentimes re-occurs in bioprosthetic substitutes, with the governing processes remaining poorly understood. Here, we present a multiscale, multimodal analysis of disturbances and extensive mineralisation of the collagen network in failed bioprosthetic bovine pericardium valve explants with full histoanatomical context. In addition to highly abundant mineralized collagen fibres and fibrils, calcified micron-sized particles previously discovered in native valves were also prevalent on the aortic as well as the ventricular surface of bioprosthetic valves. The two mineral types (fibres and particles) were detectable even in early-stage mineralisation, prior to any macroscopic calcification. Based on multiscale multimodal characterisation and high-fidelity simulations, we demonstrate that mineral occurrence coincides with regions exposed to high haemodynamic and biomechanical indicators. These insights obtained by multiscale analysis of failed bioprosthetic valves may serve as groundwork for the evidence-based development of more durable alternatives. STATEMENT OF SIGNIFICANCE: Bioprosthetic valve calcification is a well-known clinically significant phenomenon, leading to valve failure. The nanoanalytical characterisation of bioprosthetic valves gives insights into the highly abundant, extensive calcification and disorganization of the collagen network and the presence of calcium phosphate particles previously reported in native cardiovascular tissues. While the collagen matrix mineralisation can be primarily attributed to a combination of chemical and mechanical alterations, the calcified particles are likely of host cellular origin. This work presents a straightforward route to mineral identification and characterization at high resolution and sensitivity, and with full histoanatomical context, hence providing design cues for improved bioprosthetic valve alternatives

    Asparagine synthetase expression is linked with L-asparaginase resistance in TEL-AML1-negative but not TEL-AML1-positive pediatric acute lymphoblastic leukemia

    Get PDF
    Resistance to L-asparaginase in leukemic cells may be caused by an elevated cellular expression of asparagine synthetase (AS). Previously, we reported that high AS expression did not correlate to L-asparaginase resistance in TEL-AML1-positive B-lineage acute lymphoblastic leukemia (ALL). In the present study we confirmed this finding in TEL-AML1-positive patients (n = 28) using microarrays. In contrast, 35 L-asparaginase-resistant TEL-AML1-negative B-lineage ALL patients had a significant 3.5-fold higher AS expression than 43 sensitive patients (P < .001). Using real-time quantitative polymerase chain reaction (RTQ-PCR), this finding was confirmed in an independent group of 39 TEL-AML1-negative B-lineage ALL patients (P = .03). High expression of AS was associated with poor prognosis (4-year probability of disease-free survival [pDFS] 58% +/- 11%) compared with low expression (4-year pDFS 83% +/- 7%; P = .009). We conclude that resistance to l-asparaginase and relapse risk are associated with high expression of AS in TEL-AML1-negative but not TEL-AML1-positive B-lineage ALL

    Characteristics and quality of oral anticoagulation treatment in pediatric patients in the Netherlands based on the CAPS cohort

    Get PDF
    Essentials: The knowledge of quality and safety of acenocoumarol and phenprocoumon use in children is limited. We used data from a multicenter retrospective follow-up study in children in the Netherlands. The quality of anticoagulation control in the first month of use was low, but improved thereafter. No thromboembolic events occurred, however bleeding events occurred in 1-3 out of 10 patients. Summary: Background: The use of vitamin-K antagonists in pediatric patients is rare and information on the quality and safety of treatment with acenocoumarol and phenprocoumon is limited. Objectives: To assess the quality, safety and effectiveness during the first year of acenocoumarol and phenprocoumon treatment in pediatric patients in the Netherlands. Methods: The Children Anticoagulation and Pharmacogenetics Study (C

    The pediatric acenocoumarol dosing algorithm:The Children Anticoagulation and Pharmacogenetics Study

    Get PDF
    Essentials: A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow-up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary: Background: The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives: To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods: The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow-up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results: In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patien

    Dual detector micro-XRF cryotomography and mapping on the model organism Daphnia magna

    Get PDF
    The recent availability of a cryostream cooler at beamline L has allowed synchrotron radiation based micro-XRF analysis of frozen biological samples close to their native state. In a previous contribution, we compared the elemental distributions within a ydrated (frozen) and a fixed (dehydrated) Daphnia magna, which is a freshwater crustacean used in toxicological research as a model organism for evaluating effects of metals on the cosystem. Although hydrated samples show less dislocation of elements and/or sample contamination as compared to fixed samples, they are mainly composed of a water matrix, which is more susceptible to absorption effects of low energy X-rays. Therefore, we investigate the degree of absorption in 2D/CT micro-XRF elemental maps of Daphnia magna using a dual silicon drift detector (SDD) setup

    Portion size and later food intake : evidence on the “normalizing” effect of reducing food portion sizes

    Get PDF
    Background Historical increases in the size of commercially available food products have been linked to the emergence of a worldwide obesity crisis. Although the acute effect that portion size has on food intake is well established, the effect that exposure to smaller portion sizes has on future portion size selection has not been examined. Objective We tested whether reducing a food portion size “renormalizes” perceptions of what constitutes a normal amount of that food to eat and results in people selecting and consuming smaller portions of that food in the future. Design Across 3 experiments, participants were served a larger or smaller portion of food. In experiments 1 and 2, participants selected and consumed a portion of that food 24 h later. In experiment 3, participants reported on their preferred ideal portion size of that food after 1 wk. Results The consumption of a smaller, as opposed to a larger, portion size of a food resulted in participants believing a “normal”-sized portion was smaller (experiments 1–3, P ≤ 0.001), consuming less of that food 1 d later (experiments 1–2, P ≤ 0.003), and displaying a tendency toward choosing a smaller ideal portion of that food 1 wk later (experiment 3, P = 0.07), although the latter finding was not significant. Conclusion Because consumer preferences appear to be driven by environmental influences, reducing food portion sizes may recalibrate perceptions of what constitutes a “normal” amount of food to eat and, in doing so, decrease how much consumers choose to eat. This trial was registered at www.clinicaltrials.gov as NCT03241576

    DEB025 (Alisporivir) Inhibits Hepatitis C Virus Replication by Preventing a Cyclophilin A Induced Cis-Trans Isomerisation in Domain II of NS5A

    Get PDF
    DEB025/Debio 025 (Alisporivir) is a cyclophilin (Cyp)-binding molecule with potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. It is currently being evaluated in phase II clinical trials. DEB025 binds to CypA, a peptidyl-prolyl cis-trans isomerase which is a crucial cofactor for HCV replication. Here we report that it was very difficult to select resistant replicons (genotype 1b) to DEB025, requiring an average of 20 weeks (four independent experiments), compared to the typically <2 weeks with protease or polymerase inhibitors. This indicates a high genetic barrier to resistance for DEB025. Mutation D320E in NS5A was the only mutation consistently selected in the replicon genome. This mutation alone conferred a low-level (3.9-fold) resistance. Replacing the NS5A gene (but not the NS5B gene) from the wild type (WT) genome with the corresponding sequence from the DEB025res replicon resulted in transfer of resistance. Cross-resistance with cyclosporine A (CsA) was observed, whereas NS3 protease and NS5B polymerase inhibitors retained WT-activity against DEB025res replicons. Unlike WT, DEB025res replicon replicated efficiently in CypA knock down cells. However, DEB025 disrupted the interaction between CypA and NS5A regardless of whether the NS5A protein was derived from WT or DEB025res replicon. NMR titration experiments with peptides derived from the WT or the DEB025res domain II of NS5A corroborated this observation in a quantitative manner. Interestingly, comparative NMR studies on two 20-mer NS5A peptides that contain D320 or E320 revealed a shift in population between the major and minor conformers. These data suggest that D320E conferred low-level resistance to DEB025 probably by reducing the need for CypA-dependent isomerisation of NS5A. Prolonged DEB025 treatment and multiple genotypic changes may be necessary to generate significant resistance to DEB025, underlying the high barrier to resistance
    corecore