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The motive that will conquer cancer will not be pity nor horror;

it will be curiosity to know how and why...

Pity never made a good doctor, love never made a good poet.

Desire for service never made a discovery.

H.G. Wells 1927
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HISTORICAL PERSPECTIVES

The 'Three Princes of Serendip' is an old Persian fairy tale about three men who

were on a mission and encountered things that looked irrelevant at first sight but

which turned out to be important later on. They discovered things by serendipity

and sagacity. Serendip is the Persian name for Sri Lanka. Later, in 1754 Horace

Walpole coined the word serendipity. One of the founders of pediatric oncology

Giulio D'Angio1 pointed to this fable when he analyzed the discovery of treatment

tools in pediatric oncology. It has often happened that serendipitous observations

lead to a break-through in quite another field. This story includes the discovery of

L-Asparaginase:

The enzymatic deamination of asparagine was already studied by Clementi2 in

1922. In 1952 Kidd3 discovered that the injection of guinea pig serum inhibited the

growth of murine lymphomas. His experiments indicated that a protein was

responsible for the antilymphoma activity. In 1956, Neuman and McCoy4 showed

that Walker carcinoma tissue cultures had an absolute requirement for asparagine.

It took until 1961 before an explanation was found for these observations:

Broome,5 working in Kidd's laboratory, presented evidence that the enzyme L-

Asparaginase was responsible for the antitumor activity of guinea pig serum. An

effective drug was discovered by serendipity.

The next big step in the development of L-Asparaginase as an effective

antitumor agent took place in 1964. Mashburn et al. demonstrated that L-

Asparaginase produced by the microorganism Escherichia coli (E. coli) had the

same antitumor activity as that gained from guinea pig serum.6 L-Asparaginase

could be extracted from two bacterial sources: Escherichia coli 6 and Erwinia

chrysanthemi.7 The bacterial source made it possible to produce and utilize larger

quantities of the enzyme and a series of preclinical and clinical studies was

initiated.8,9 A polyethylene glycol modified version of the enzyme (PEG-

Asparaginase) was developed in the 1970s and 1980s and was first used in clinical

trials in the 1980s.

The importance of L-Asparaginase in the treatment of acute lymphoblastic

leukemia (ALL) was demonstrated.10,11 ALL is the most common cancer in

childhood with 110 - 120 newly diagnosed children in the Netherlands each year.

The 5-year disease free survival for children with ALL could be improved with more

intensive combination chemotherapy from 4% in the early 1960s to more than

80% in the 1990s.12 The continuously improving treatment results through the

years are an example of accurate registration, medical development and the

handling of therapeutic schedules according to often international treatment

protocols. L-Asparaginase was used as a single agent or in combination with other

drugs to treat ALL. This drug appeared to be highly effective especially in children

with newly diagnosed ALL.13 Prolonged L-Asparaginase intensification improved the

outcome significantly as was demonstrated in the Dana-Farber Cancer Institute

ALL Consortium Protocol 91-01.14 Nowadays, L-Asparaginase is an essential drug

that is used to treat children with ALL all over the world.
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DRUG PROPERTIES AND PHARMACOLOGY

Chemistry

The chemical properties of L-Asparaginase are extensively described in several

biochemical reviews.15-17 The enzymatic hydrolysis of the non-essential amino

acids asparagine and glutamine to aspartic acid, glutamic acid and ammonia

causes a depletion of the corresponding serum amino acids. The glutaminase

activity amounts about 3 - 4 % of the L-Asparaginase activity.18 Therefore, high

doses of L-Asparaginase will also reduce the level of glutamine in serum. Complete

asparagine depletion is already achieved within a few minutes after administration

of L-Asparaginase whereas complete glutamine depletion is not achieved because

of an excess of glutamine in the serum.

Pharmacokinetics

Different L-Asparaginase preparations have different half-lives.19-21 Asselin et al.

found that native E. coli preparations had a half-life of 1.24 ± 0.17 days (i.e. 29.8

± 4.1 hours) in blood, whereas the half-life of identically applied Erwinia

chrysanthemi Asparaginase, Erwinase® (Ipsen, Maidenhead, UK) was much

shorter. Different half-lives of the L-Asparaginase preparations lead to different

durations of asparagine depletion (Table 1.1).

Pegylation, i.e. the covalent binding of monomethoxy-polyethylene glycol (PEG)

molecules to proteins, is a common method to reduce the immunogenic potential

of therapeutically applicable proteins. Pegylation of L-Asparaginase extended the

half-life of the enzyme activity to more than 5 days.19 The longer half-life of PEG-

Asparaginase is caused by the higher molecular weight, the slower degradation of

the enzyme by proteases and a reduced absorption in the reticular endothelial

system.22

Table 1.1 Half-lives of different L-Asparaginase preparations

Asselin et al.19

Elimination half-life (hours)

Dose: 25,000 IU/m2 i.m.

Werber et al.21

Elimination half-life (hours)

Dose: 10,000 IU/m2 i.v.

PEG-Asparaginase

(Oncaspar®)

137.5 ± 77.8

E. coli L-Asparaginase

(Medac® / Paronal®)

23 ± 2.5

E. coli L-Asparaginase

(Crasnitin® / Elspar®)

29.8 ± 4.1 17.7 ± 2.5

E. chrysanthemi L-Asparaginase

(Erwinase®)

15.6 ± 3.1 7.2 ± 4.1
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L-Asparaginase


H2O + asparagine aspartic acid + NH3

aspartic acid+ ATP + amine glutamic acid + asparagine + AMP
(from glutamine) 

asparagine synthetase

Plasma L-Asparaginase activity levels of  100 IU/L guaranteed complete

plasma asparagine depletion, i.e. < 0.2 µmol/L.23 The established dosage scheme

should therefore be adapted to the different half-lives of the different products.

The German BFM studies on the native E. coli L-Asparaginase preparation L-

Asparaginase medac® and on Erwinase®, originally both dosed as 10.000 IU/m2

intravenously, led to the recommendation of reducing the dose of L-Asparaginase

medac® to 5000 IU/m2 and increasing the Erwinase® dose to 20.000 IU/m2 in

order to achieve complete asparagine depletion in serum. 1000 IU/m2 PEG-

Asparaginase resulted in L-Asparaginase activities > 100 IU/L and thus complete

asparagine depletion in serum.24

It has been suggested that L-Asparaginase hardly penetrates the central

nervous system (CNS).25 The activity of native E. coli L-Asparaginase in the

cerebro-spinal fluid (CSF) was less than 1% of the corresponding serum activity.

Yet, L-Asparaginase is believed to play a role in the prevention of meningeal

leukemia.25

Intravenous versus intramuscular application of both L-Asparaginase medac® or

Erwinase® application revealed no difference in pharamacokinetics.26,27

Pharmacodynamics

Asparagine depletion

The effectiveness of L-Asparaginase therapy in ALL is said to be a result of

depletion of asparagine within leukemic cells. L-Asparaginase hydrolyzes

asparagine to aspartic acid and ammonia and as a consequence asparagine in

serum will be depleted promptly (Figure 1.1). In normal cells asparagine is a non-

essential amino acid because cells use the enzyme asparagine synthetase to

synthesize asparagine. Asparagine synthetase, encoded by a single gene located

on chromosome 7q21.3,28 is the only enzyme available for the synthesis of

asparagine. This enzyme adds an amine from glutamine to aspartic acid, thereby

forming the characteristic amide group of asparagine. In contrast to normal cells,

asparagine is supposed to be an essential amino acid for leukemic cells because of

their relative lack of asparagine synthetase.29 Asparagine depletion inhibits protein

and RNA synthesis30 and induces cell cycle arrest and apoptosis in murine

leukemia cell lines.31 Complete asparagine depletion in the human circulation will

be reached as long as the L-Asparaginase activity level in serum is > 100 IU/L.23

Figure 1.1 Mechanism of action of L-Asparaginase
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glutaminase


H2O + glutamine glutamic acid + NH3

glutamic acid + NH3 + ATP ADP + glutamine + H2O


glutamine synthetase

Glutamine depletion

Glutamine levels will also drop upon L-Asparaginase exposure, an effect explained

by the low glutaminase activity of L-Asparaginase32 (Figure 1.2). A reduction in

glutamine levels also contributes to the antileukemic effect of L-Asparaginase,

since glutamine plays a role in cellular metabolism and protein synthesis. Serum

levels of glutamine (650 mol/L) are about tenfold higher than the amount of

asparagine. Glutamine hydrolysis leads to an increase in glutamic acid. However,

glutamine concentrations rapidly return to normal levels and remain normal during

prolonged L-Asparaginase activity.18 This is due to the fact that the body can

increase its rate of glutamine synthesis by glutamine synthetase.33

Asparagine synthetase and resistance to L-Asparaginase

Cell line studies showed that L-Asparaginase sensitive leukemic cells had low

intracellular asparagine synthetase activity and were dependent on the availability

of extracellular asparagine.34 Complete in vitro depletion of asparagine resulted in

an amino-acid dependent upregulation of both mRNA, protein and activity of

asparagine synthetase.28 Resistance to L-Asparaginase in leukemic cell lines has

been associated with upregulation of asparagine synthetase mRNA.28,35 However,

Fine et al. showed that L-Asparaginase results differ between leukemic cell lines

and primary samples from leukemic patients and hence, cell line data can not be

easily extrapolated to primary patient's cells.36

The relevance of in vitro resistance to antileukemic drugs in pediatric ALL was

demonstrated by the fact that clinical outcome of patients resistant to

L-Asparaginase, vincristine and prednisone was significantly worse than of

sensitive patients.37-39 In contrast, the prognostic favourable subtype of TEL-AML1

positive ALL is associated with in vitro L-Asparaginase sensitivity.40,41 However, a

high baseline intracellular asparagine synthetase level was not related to in vitro

L-Asparaginase resistance in children with TEL-AML1 positive ALL,40 whereas the

two factors were correlated in other genetic subclasses of precursor B-ALL.42 These

data suggest that mechanisms other than high asparagine synthetase activity are

important to L-Asparaginase resistance in TEL-AML1 rearranged ALL. These factors

may probably also contribute to L-Asparaginase resistance in other types of ALL.

Knowledge of resistance mechanisms to L-Asparaginase is therefore important for

improving outcome of childhood ALL.

Figure 1.2 Mechanism of action of glutaminase
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Interaction of L-Asparaginase with amino acids other than asparagine and

glutamine

In 1969 Miller et al. already determined the serum levels of other amino acids

during treatment with E. coli L-Asparaginase in two patients.18 Besides the well-

known effects on the level of asparagine and glutamine no significant changes

were observed in the concentrations of other amino acids. With more modern

techniques the group of Avramis monitored a decrease of 19% - 83% in serine,

threonine, histidine, proline and arginine serum levels of 73 pediatric ALL

patients.43,44 It has been suggested that this effect on other amino acids is

involved in the antileukemic activity of L-Asparaginase through interference with

protein synthesis. In addition, acute leukemic cells had consistently lower taurine

levels compared to normal cells and required L-cysteine probably due to a tenfold

decrease in the activity of -cystathionase45 (Figure 1.3).

Depletion of asparagine by L-Asparaginase resulted in decreased glycine

concentrations in an animal model presented by Ryan.46 In this model

intraperitoneally injected glycine or asparagine effectively eliminated the antitumor

effect of L-Asparaginase. However, Chakrabarti et al. could not confirm these

results.47 They found that the transamination of glyoxylate to glycine was

significantly decreased in sensitive cells compared to cells resistant to

L-Asparaginase.48 This made them suggest that an increase in glyoxylate content

in sensitive cells might attribute to the antileukemic effect.

methionine

homocysteine

cystathionine

cysteine

-glutamylcysteine

glutathione

MTHFR

tetra-hydrofolate

5-methyl-tetra-
hydrofolate

taurine

-cystathionase

serine

glutamic acid

glycine

L-Asparaginase

asparagine

aspartic acid

glutamine

glyoxylate

protein

synthesis

threonine / histidine / proline / arginine / valine ?

Figure 1.3 Interference of L-Asparaginase with the metabolism of amino acids
The interference of L-Asparaginase with serum amino acid levels: squares point to increased
levels upon L-Asparaginase exposure, circles to decreased levels upon L-Asparaginase exposure.
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L-ASPARAGINASE AND HEMOSTASIS

The depletion of asparagine and glutamine is followed by metabolic and cellular

events leading to clinical side effects of therapy such as neurotoxicity and

hepatotoxicity,32 hyperglycemia, pancreatitis and alterations in hemostasis.49,50

The duration of asparagine depletion in serum of patients correlated with the

incidence of coagulation disorders.51 Changes in laboratory parameters of

coagulation were related to the L-Asparaginase activity in plasma.52 Because the

administration of L-Asparaginase takes place in conjunction with other drugs,

especially corticosteroids, it is difficult to relate adverse reactions in hemostasis to

L-Asparaginase only.

Most of the thrombotic events occur during induction therapy. The rate of

clinical thrombosis was 5.2% in a meta-analysis of 1752 children.53 Studies have

been performed to investigate the role of L-Asparaginase therapy alone54-56 or in

combination with other drugs, especially corticosteroids.57,58 The decrease in

coagulation proteins upon L-Asparaginase exposure is in part counterbalanced by

corticosteroids which increase procoagulant factors.59 There are no data showing

that different kinds of corticosteroids e.g. prednisone or dexamethasone interfere

in different ways with L-Asparaginase.

The degree of disturbance of the coagulation system is dependent on the dose

and on the type of L-Asparaginase preparation51,60 and is mainly attributed to a

decrease in coagulation protein synthesis. This will generate a disturbance in the

hemostatic balance between bleeding and thrombosis. Increased thrombin

generation and a decreased antithrombotic potential of the plasma are thought to

be of critical importance in generating thrombo-embolic complications in children

with ALL treated with chemotherapy. There are no data on changes in the

coagulation profile after the administration of PEG-Asparaginase only.

The results of a randomized study on the use of antithrombin supplementations

aiming to reduce the incidence of thrombo-embolic events were not conclusive

(PARKAA study).61 The incidence of thrombosis in patients treated with

antithrombin was 28%, compared to 37% in the non-treated arm. However, no

significant differences were seen in levels of markers of endogenous thrombin

generation indicating that the suppression of antithrombin by L-Asparaginase was

not the critical event in the development of thrombo-embolism. Replacement

therapy with fresh frozen plasma62,63 was also ineffective to correct for

L-Asparaginase-induced coagulation factor deficiency.

The prophylactic use of Enoxaparin®, a low molecular weight heparin, during

L-Asparaginase treatment seemed safe and might be effective in preventing

thrombotic events.64 Thrombotic events were not found in 41 children with ALL

analyzed. However, also in a historical control group of 50 children without

prophylactic low molecular weight heparin treatment only two events were

observed. Therefore, there is currently no solid data indicating which strategy may

prevent thrombo-embolic events caused by L-Asparaginase.
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OUTLINE OF THE THESIS

In Part I we studied pharmacokinetic and pharmacodynamic aspects of a

monotherapy with PEG-Asparaginase.

In Part II the main toxic side effect of L-Asparaginase treatment related to

changes in hemostasis was studied.

Part I

Resistance to L-Asparaginase has in vitro been attributed to high levels of

intracellular asparagine synthetase (AS). However, it was unknown whether

baseline and/or L-Asparaginase induced AS mRNA levels were linked to the clinical

response to this drug. We investigated in chapter two whether in vivo baseline

and/or L-Asparaginase induced AS mRNA levels were related to the clinical

response to a single dose of 1000 IU/m2 PEG-Asparaginase in children (1 - 18

years) with newly diagnosed ALL before starting combined chemotherapy. Changes

in AS mRNA expression were analyzed in time during this investigational window

and related to the clinical response after 5 days. Because proB ALL is not

frequently found in children older than 1 year, we additionally measured the

baseline AS mRNA expression in 23 infants with proB ALL to compare data of this

type of leukemia with those of other subtypes of ALL patients enrolled in the

window study.

In chapter three we investigated the clinical and biological effects of this single

dose of PEG-Asparaginase in children with newly diagnosed ALL. We compared the

clinical response to PEG-Asparaginase with the in vitro sensitivity to

L-Asparaginase at diagnosis and with clinical long-term outcome. The relationship

between immunophenotype, genotype and clinical response was studied. In vivo

response to PEG-Asparaginase was studied in relationship with baseline as well as

L-Asparaginase-induced changes in serum and intracellular amino acid levels, and

with parameters of apoptosis. In addition, clinical toxicity and changes in

coagulation profiles were analyzed both after one single infusion with PEG-

Asparaginase and after the combination chemotherapy given thereafter.

Pharmacokinetics and pharmacodynamics of L-Asparaginase in the cerebro

spinal fluid (CSF) had not been characterized well for PEG-Asparaginase. In

chapter four we monitored L-Asparaginase activity levels and asparagine

concentrations in plasma and CSF after the administration of 1000 IU/m2 PEG-

Asparaginase on day -5. Regular chemotherapy according to the DCOG-ALL-9

schedule was started at day 0. From day -5 till day 0 blood samples were collected

daily, and later on twice a week. A lumbar puncture was performed at diagnosis

(day -5), at day 0 and at day 15 when intrathecal therapy was administered and

asparagine levels in the CSF could be monitored.

Part II

A main side effect of L-Asparaginase is the increased risk of thrombo-embolic

complications. In part II of this thesis we focused on the effects of L-Asparaginase
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on coagulation parameters. We performed a randomized study between native E.

coli L-Asparaginase and Erwinia L-Asparaginase (chapter five) to evaluate

differences in the risk on thrombo-embolic complications. The study was

performed during induction therapy of the DCOG-ALL-7 protocol. L-Asparaginase

was administered 8 times as 10.000 IU/m2 intravenously every three days starting

at day 19. Thrombin generation and fibrinolysis was studied in blood samples

taken before each L-Asparaginase infusion.

The concept of developmental hemostasis points to age-related changes in the

coagulation system. Infants and adolescents are at risk for thrombo-embolic

events due to physiological changes in their coagulation profile. Most serious

thrombo-embolic complications during L-Asparaginase treatment are seen in

adolescence. We hypothesized that these physiological changes in the coagulation

system might influence the risk on thrombosis during L-Asparaginase therapy. In

chapter six we describe the differences in changes in coagulation between

patients in different age groups: 1 - 5, 6 - 10 and 11 - 16 years old. The children

were treated according to the DCOG-ALL-9 protocol with four doses of E. coli

L-Asparaginase Paronal during induction. Procoagulant and anticoagulant factors

and parameters of thrombin generation and fibrinolysis were monitored.

There is an interaction between the effects of corticosteroids and

L-Asparaginase on the coagulation system. Different schedules are used during

anti-leukemic treatment including differences in dosages of corticosteroids and

L-Asparaginase, but also different timing and duration of administering these

drugs. We analyzed two different regimens of concomitant use of these drugs in

chapter seven in a group of high-risk ALL patients receiving dexamethasone and

L-Asparaginase during induction and during intensification treatment of ALL

according to the DCOG-ALL-9 protocol. We monitored procoagulant and

anticoagulant factors and parameters of thrombin generation and fibrinolysis.

Finally, all results are discussed in Part III, chapter eight and summarized in

chapter nine in English and Dutch.
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ABSTRACT

L-Asparaginase (L-Asp) is an effective drug for

treatment of children with acute lymphoblastic

leukemia (ALL). The effectiveness is generally

thought to result from a rapid depletion of

asparagine in serum and cells. Asparagine

synthetase (AS) opposes the action of L-Asp by

resynthesis of asparagine. In vitro, resistance to L-

Asp has been associated with up-regulation of AS

mRNA expression. We monitored AS mRNA levels in

leukemic cells before and during 5 days after

intravenous administration of 1000 IU/m² of

pegylated L-Asparaginase (PEG-Asp) in a

therapeutic window in children with ALL at initial

diagnosis. Within 24 hours, AS mRNA levels

increased by 3.5-fold and remained stable in the

following 4 days. Baseline and L-Asp-induced

expression levels of AS did not differ between

clinically good, intermediate, and poor responders

to PEG-Asp. No significant difference of AS mRNA

up-regulation was found between precursor B- and

T-ALL or between hyperdiploids, TEL-AML1

rearranged ALL or absence of genetic abnormalities.

In 3 of 12 patients with T-ALL even a slight down-

regulation of AS mRNA expression upon L-Asp

exposure was found. In conclusion, although L-Asp

exposure induces the expression of AS mRNA, the

up-regulated gene expression does not correlate

with an early clinical poor response to this drug in

children with ALL.
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INTRODUCTION

L-Asparaginase (L-Asp) is an effective drug for the treatment of children with acute

lymphoblastic leukemia (ALL).1,2 In newly diagnosed patients with ALL, 25% to

60% will reach a complete remission after monotherapy with L-Asp.1 The efficacy

of this drug is generally thought to result from a rapid and complete depletion of

asparagine in plasma by hydrolyzing this amino acid to aspartic acid.

L-Asp resistance has been attributed to high levels of intracellular asparagine

synthetase (AS).3 Cell line studies showed that L-Asp sensitive leukemic cells have

low intracellular AS activity and are dependent on the availability of extracellular

asparagine.4 Andrulis et al. demonstrate that complete asparagine depletion in

vitro results in an amino-acid dependent up-regulation of mRNA, protein and

activity of AS.5 Resistance to L-Asp in cell lines is in vitro mediated by an up-

regulation of AS expression in response to asparagine depletion of culture

medium.6,7 Whereas these cell line studies suggest that up-regulation of AS

expression is an important mechanism of L-Asp resistance, clinical evidence is

lacking for this assumption. In recent studies we found evidence that a high

baseline intracellular AS gene expression is related to in vitro L-Asp resistance in

children with TEL-AML1 negative ALL,8 but not in TEL-AML1 positive children.9 This

suggests that the genotype plays an important role in the cause of L-Asp

resistance. However, it is yet unknown whether baseline and/or L-Asp induced AS

mRNA levels are linked to the clinical response to this drug given as a therapeutic

window upfront of combination chemotherapy.

In the present in vivo study we investigate whether baseline and/or L-Asp-

induced AS mRNA levels are related to the clinical response to a therapeutic

window with L-Asp in children with newly diagnosed ALL.

PATIENTS, MATERIALS, AND METHODS

Patients and therapeutic window with PEG-Asp

In close collaboration between our institution and the Dutch Childhood Oncology

Group (DCOG; the former Dutch Childhood Leukemia Study Group) a window

study with pegylated Escherichia coli L-Asp (PEG-Asp) upfront to the ALL-9

treatment schedule was initiated in July 2000. The DCOG ALL-9 study was

implemented in the Netherlands to confirm the good results of the ALL-6 study,10

which was originally based on the German ALL-BFM strategy. The aim of our study

is to determine the clinical response as well as molecular determinants of L-Asp

response in ALL. Children with ALL at initial diagnosis and presenting with white

blood count (WBC) greater than 10 x 109/L were eligible. Similar to a study from

the Dana Farber Cancer Institute,11 we assessed a 5-day investigational window. A

complete and persistent depletion of asparagine is considered to be the

mechanism of action of L-Asp treatment. Boos et al.12 showed that a plasma E coli

Asp activity of more than 100 IU/L leads to an asparagine depletion of less than

0.2 μM in plasma. Muller demonstrated that one dose of 1000 IU/m2 PEG-Asp
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resulted into more than 100 U/L serum enzyme activity of L-Asp for 3 weeks.13 In

a previous study we confirmed that 1000 IU/m2 PEG-Asp given as a therapeutic

window at day -5 (ie, 5 days before starting combined chemotherapy) results in

more than 100 U/L L-Asp activity for at least 10 days in children with ALL at initial

diagnosis.14 In the present study patients received a single dose of 1000 IU/m2

PEG-Asp in a 1-hour infusion 5 days before starting the DCOG-ALL-9 combination

chemotherapy treatment schedule. PEG-Asp, kindly provided by Medac (Hamburg,

Germany), was used mainly because of its lower immunogenicity than native

(unpegylated) L-Asp.15 This lower immunogenicity is important since these

patients will be treated with unpegylated L-Asp as part of their regular combination

chemotherapy hereafter.

We decided to use the same definition for clinical response that is used for

response to prednisone:16 more than 1 x 109 leukemic blasts per liter (1000/L) of

peripheral blood has been shown to be highly predictive for an inferior outcome.

So, the clinical response on day 0 (5 days after the PEG-Asp infusion) was defined

as good when the number of leukemic cells had declined to less than 1 x 109/L of

peripheral blood, as intermediate when leukemic cells were 1 x 109/L to 10 x

109/L, and as poor when leukemic cells were greater than 10 x 109/L.

Between July 2000 and October 2002, 31 patients with ALL were enrolled in the

study. Of these, 25 children were diagnosed in the Erasmus MC-Sophia Children's

Hospital, Rotterdam, and 6 children in 3 other university hospitals in the

Netherlands. Patients' characteristics are shown in Table 2.1.

Table 2.1 Characteristics of 31 patients treated with one dose of PEG-Asp before the
DCOG-ALL-9 study

Characteristic Value

Male / Female 17/14

Age, median, y (range) 4.2 (1.2 - 13.1)

Median WBC count at diagnosis, x 109/L (range) 47 (11.4 - 417)

Immunophenotype

Pro-B-ALL 1

common ALL 9

Pre-B-ALL 9

T-ALL 12

Cytogenetic characteristics

Hyperdiploid 9*

TEL-AML 1 fusion 5

BCR-ABL fusion 1*

MLL gene rearranged 0

others 17

CNS involvement**

Yes 0

No 31

Patients were administered one intravenous dose of 1000 IU/m2 pegylated L-Asparaginase
before undergoing combination chemotherapy as part of the DCOG (Dutch Childhood Oncology
Group) ALL-9 study.
* one patient had both a hyperdiploidy and a BCR-ABL fusion,
** CNS involvement defined as more than 5 cells/μL with blasts in the cerebrospinal fluid
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Because pro-B-ALL is not frequently found in children older than 1 year, we

additionally measured the baseline AS mRNA expression in 23 infants with pro-B-

ALL (Interfant-99) to compare data of this type of leukemia with those of other

subtypes of ALL patients enrolled in the window study.

The immunophenotyping was performed at reference laboratories of the

participating groups. The B-lineage ALL cells (CD19+, HLA-DR+) were classified into

the following differentiation stages: pro-B-ALL cells were CD10-, cytoplasmic μ

chain-negative (cμ-), and surface immunoglobulin-negative (sIg-); cALL cells were

CD10+/cμ-/sIg-; pre-B-ALL cells were CD10+/-/cμ+/sIg-. B-ALL cells characterized

by CD10-/cμ-/sIg+ were excluded from the study.

The window study on PEG-Asp and the Interfant study on infants with pro-B-

ALL were approved by the local ethical committee and by the institutional research

board of the DCOG. The patient and/or the parents and guardians have given

informed consent for these studies in accordance with the Declaration of Helsinki.

Patient samples

Bone marrow and peripheral blood samples were obtained at initial diagnosis of

ALL (day-5) before the administration of PEG-Asp. To perform daily analyses of

asparagine synthetase (AS) expression in leukemic cells we decided for ethical

reasons that daily collection of bone marrow was unacceptable. Stams et al.9 have

shown that purified leukemic cells out of peripheral blood revealed comparable AS

mRNA levels compared with leukemic cells isolated out of bone marrow. Therefore,

blood samples were collected during 5 consecutive days until the start of

combination chemotherapy at day 0. Within 24 hours after sampling, mononuclear

cells were isolated by density gradient centrifugation using Lymphoprep (density

1.077 g/mL; Nycomed Pharma, Oslo, Norway) and centrifuged at 480g for 15

minutes at room temperature. The collected mononuclear cells were washed twice

and kept in culture medium consisting of RPMI 1640 medium (Dutch modification

without L-glutamine; Gibco BRL, Life Technologies, Breda, MD), 20% fetal calf

serum (FCS; Integro, Zaandam, The Netherlands), 2 mM L-glutamine (Gibco BRL,

Life Technologies), 5 μg/mL insulin, 5 μg/mL transferrin, 5 ng/ml sodium selenite

(ITS media supplement; Sigma, St Louis, MO), 100 IU/mL penicillin, 100 μg/mL

streptomycin, 0.125 μg/mL amphotericin B (Life Technologies), and 0.2 mg/mL

gentamycin (Life Technologies). Contaminating nonleukemic cells in the ALL

samples were removed by immunomagnetic beads as described by Kaspers et al.17

All samples contained more than 90% leukemic cells, as determined

morphologically on May-Grünwald-Giemsa-stained (Merck, Darmstadt, Germany)

cytospins.

RNA extraction and cDNA synthesis

Total cellular RNA was extracted from a minimum of 5 x 106 cells using Trizol

reagent (Life Technologies) according to the manufacturer's protocol, with minor

modifications as reported previously.9 The concentration of RNA was quantified

spectrophotometrically and the quality was checked on agarose gels. Following a

denaturation step of 5 minutes at 70 ºC, 1 μg of RNA was reverse-transcribed into
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single-stranded cDNA. The reverse transcription (RT) was performed in a total

volume of 25 μL, containing 2.5 nM random hexamers and 20 nM oligo dT primers

(Amersham Pharmacia Biotech, Piscataway, NJ), 200 U Moloney murine leukemia

virus reverse transcriptase (Promega, Madison, WI), and 25 U RNAsin (Promega)

and was incubated at 37 ºC for 30 minutes, 42 ºC for 15 minutes and 94 ºC for 5

minutes. The obtained cDNA was diluted to a final concentration of 8 ng/μl and

stored at -80 ºC.

Quantitative real-time PCR

The mRNA expression levels of AS and the endogenous housekeeping gene

encoding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a reference,

were quantified using real-time polymerase chain reaction (RTQ-PCR) analysis

(TAQMAN chemistry) on an ABI Prism 7700 sequence detection system (PE Applied

Biosystems, Foster City, CA).

Amplification of specific PCR products was detected using dual-fluorescent

nonextendable probes labeled with 6-carboxyfluorescein (FAM) at the 5' end and

6-carboxytetramethylrhodamine (TAMRA) at the 3' end. The primers and probe

combinations were designed using OLIGO 6.22 software (Molecular Biology

Insights, Cascade, CO) and have been published elsewhere.9 Because all PCRs

were performed with equal efficiencies (> 95%), relative mRNA expression levels

of AS for each patient could directly be normalized for input RNA using the GAPDH

expression of the patient. The relative mRNA expression level of the target gene in

each patient was calculated using the comparative cycle time (Ct) method.18

Briefly, the target PCR Ct values (ie, the cycle number at which emitted

fluorescence exceeds 10 x the standard deviation [SD] of baseline emissions, as

measured from cycles 3 to 12) are normalized by subtracting the GAPDH Ct value

from the target PCR Ct value, which gives the ΔCt value. From the ΔCt value, the

relative expression level to GAPDH for AS is calculated using the following

equation: relative mRNA expression = 2-ΔCt x 100%.

Statistics

Differences in mRNA expression levels measured at different days were analyzed

using the Wilcoxon matched-pairs signed rank test. The relationship between AS

mRNA expression and in vivo PEG-Asp response and between AS expression and

immunophenotype or cytogenetic subtype was analyzed with the Mann-Whitney U

(MWU) test.

RESULTS

Children with newly diagnosed ALL and WBC greater than 10 x 109/L were

consecutively enrolled into the study. As is shown in Table 2.1, 31 children were

eligible at the moment of analysis: 1 with pro-B-ALL, 9 with common ALL, 9 with

pre-B-ALL, and 12 with T-ALL.
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Similar to day 7 for a prednisone window response, we evaluated the in vivo

response to PEG-Asp by counting the number of leukemic blasts in the peripheral

blood at day 0, 5 days after PEG-Asp was given. As can be seen in Figure 2.1, the

leukemic cells in the peripheral blood dropped continuously over 5 days. The

number of leukemic cells reduced 224-fold from median 44.7 x 109/L at day-5 to

median of 0.2 x 109/L at day 0. This was more than a 2-log decrease in leukemic

cell burden. There were 21 (68%) children who were PEG-Asp good responders

(blast number < 1 x 109/L at day 0), 6 (19%) who were intermediate responders

(blasts 1 x 109/L to 10 x 109/L at day 0) and 4 (12%) children who were poor

responders (blasts > 10 x 109/L at day 0) (Figure 2.1).

The baseline expression level of AS mRNA relative to GAPDH was median

0.26% (range 0.05% - 2.5%) in leukemic cells (> 90% purity). This was in the

range of healthy controls as described in our previous study.9 The expression

levels of AS in leukemic cells relative to GAPDH increased significantly median 3-

fold, from 0.26% (basal expression) to 0.75% 24 hours later (P < 0.001; Figure

2.2). During the following 4 days the expression of AS mRNA remained stable at

the level of 24 hours (Figure 2.2; Table 2.2).

Figure 2.1 Clinical response to pegylated L-asparaginase (PEG-Asp) in pediatric
acute lymphoblastic leukemia (ALL)

Clinical response to 1000 IU/m2 intravenous PEG-Asp, measured as the decrease in the absolute
number of leukemic cells in peripheral blood of 31 children with ALL. The final values at day 0
are shown for each individual by dots. The clinical response line shows the median and 25th and
75th percentiles. A good clinical response is defined by < 1 x 109 blasts/L at day 0, an intermediate
response by 1 x 109 blasts/L to 10 x 109 blasts/L on day 0, and poor response by more than 10 x
109 blasts/L at day 0. Dotted lines indicate the cut-off values for these clinical responses.

-5 -4 -3 -2 -1 0
0.0001

0.001

0.01

0.1

1

10

100

1000

induction CT

good responders

intermediate responders

poor responders

days after initial Dx

1000 IU/m2

PEG-Asp i.v.

window

n
u
m

b
e
r

o
f
le

u
ke

m
ic

c
e
lls

in

p
e
ri
p
h
e
ra

lb
lo

o
d

(x
1
0

9
/L

)



Chapter 2

24

Table 2.2 Asparagine synthetase (AS) mRNA expression values in time

Median expression values (and 25th - 75th percentiles) of AS mRNA compared with GAPDH in
time in leukemic cells of 31 children induced by pegylated L-asparaginase (PEG-Asp). Wilcoxon
signed rank test compared between successive days, and day -5 values compared to levels of
day -4, day -3, day -2, day -1, and day 0, NA indicates not applicable.

The baseline expression level of AS mRNA did not differ between good and

intermediate (P = 0.614), good and poor (P = 0.852) responders, and

intermediate and poor (P = 1.0) responders; nor did the up-regulated AS levels

after 24 hours of PEG-Asp differ between good and intermediate (P = 0.614)

responders, good and poor (P = 0.737) responders, and intermediate and poor (P

= 0.914) responders (Figure 2.3A-B). The fold-change in AS mRNA expression

levels was also not related to the relative (P = 0.997) or absolute (P = 0.804)

decrease in leukemic cells in all 31 patients.

The AS expression for the different immunophenotypic ALL subgroups at

diagnosis is shown in Figure 2.4. The median levels of AS mRNA relative to GAPDH

mRNA for c/pre-B-ALL patients (0.21%) and for the T-ALL patients (0.28%) did

not significantly differ (P = 0.376). One window patient had a pro-B-ALL for which

the baseline expression of AS mRNA was 3-fold higher than the other c/pre-B-ALL

patients. To explore whether pro-B-ALL is associated with a high AS mRNA

expression we analyzed the AS expression of 23 infant pro-B-ALL cases. Infants

with pro-B-ALL had a median 0.15% (range, 0.07% - 1.43%) AS mRNA expression

level, which was not significantly different from the baseline AS expression values

in non-infants with c/pre-B- or T-ALL (Figure 2.4A). The c/pre-B-ALL group had a

median baseline AS expression level of 0.21% that rose significantly to a median

of 0.72% 1 day later (median 3.99-fold individual up-regulation, P = 0.001).

Patients with T-ALL demonstrated a significant increase from baseline 0.28% to

0.68% 1 day later (median 1.94-fold individual up-regulation, P = 0.012). Patients

with T-ALL tended to have a lower individual up-regulation of AS mRNA compared

with the children with c/pre-B-ALL, but this was not statistically different (P =

0.107; Figure 2.4B). Only 3 cases had a slight down-regulation of the AS mRNA

expression (-1.6-, -1.2-, and -1.05-fold). These 3 cases were all patients with T-

ALL, of whom 2 were clinically good responders.

day

-5 -4 -3 -2 -1 0

AS Expression compared to GAPDH (%)

Median

25th – 75th percentile

0.26

0.16-0.46

0.75

0.45-1.4

0.75

0.52-1.18

0.87

0.47-1.17

1.05

0.48-1.05

0.99

0.53-1.8

Wilcoxon signed rank test, P

compared between successive days NA < 0.001 0.4 0.4 0.06 0.4

Day -5 compared with

days -4, -3, -2, -1, and 0

NA < 0.001 0.001 0.001 0.001 0.002
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Figure 2.2 Asparagine synthetase (AS) mRNA expression induced by pegylated L-
Asparaginase (PEG-Asp) in time

Time-response curves of AS mRNA expression in leukemic cells of 31 children after one single
dose of PEG-Asp (1000 IU/m2 given intravenously at day -5).
* 3-fold increase in AS mRNA from day-5 to day-4 (P < 0.001).

The baseline and PEG-Asp induced expression levels of AS mRNA did not differ

between hyperdiploid (n = 9), TEL-AML1 positive (n = 5) and other B-lineage ALL

(n = 5). For infants with MLL gene-rearranged ALL, no data were available for the

effect of L-Asp on AS mRNA levels, because these patients were not eligible for the

PEG-Asp window study.

DISCUSSION

Studies on putative causes of L-Asp resistance have been performed most

extensively in mouse cell lines.5,6 L-Asp sensitive tumor cells that did not contain

detectable levels of AS developed resistance to L-Asp through exposure of cells to

sublethal concentrations of this drug.19 Resistant cells up-regulated AS expression

and activity by 60-fold. It is well known that AS plays a crucial role in maintaining

amino acid homeostasis in cells.20 A rapid transcriptional control of the AS gene

occurs following deprivation of any single essential amino acid.6,21 In 1997, Hutson

et al.6 demonstrated that depletion of the intracellular asparagine pool by L-Asp

was sufficient to activate in vitro AS expression in human leukemic cell lines. The

increase in AS mRNA expression also resulted in a simultaneous up-regulation of

AS protein levels and AS enzyme activity.6,7 The direct correlation among mRNA,

protein, and activity levels was confirmed by Irino et al.22 The activity of AS was

inversely related to the sensitivity to L-Asp in human leukemia cell lines.6,23 These

studies suggest that the expression of the AS gene is linked to resistance to L-Asp.
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Figure 2.3 Relationship between clinical response and asparagine synthetase (AS)
mRNA expression

(A) Baseline AS mRNA expression levels. (B) PEG-Asp-induced changes in AS mRNA expression
levels measured after 24 hours of in vivo exposure to PEG-Asp compared to baseline expression
levels. Dots represent individual expression values; solid lines, represent the median expression
value per group. For definition of clinical response: see Figure 2.1.

In addition to the fact that these studies dealt not with primary patient samples

but with cell lines, Wagner and Boos24 argued that the test conditions in Hutson's

experiments were not comparable with in vivo situations, where various products

and substrates (such as aspartate, glutamate, glutamine, and ammonia, among

others) are all part of metabolic pathways and equilibrium conditions.5

In 1969 Haskell et al. studied in vivo AS activity in 18 patients with leukemia.3

Prior to therapy, AS activity was nearly undetectable in leukemic cells. Patients

were treated with 200 IU/kg E coli L-Asp daily for 3 days to 3 weeks. A 7-fold

increase in AS activity was found in 5 L-Asp-resistant compared to 4 L-Asp

sensitive patients (mixed cohort of ALL, acute myeloid leukemia [AML], chronic
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myelogenous leukemia [CML], and chronic lymphocytic leukemia [CLL]). Haskell et

al.3 suggested that L-Asp resistance was related to the capacity of leukemic cells to

up-regulate AS expression for asparagine biosynthesis. However, besides the

limited number of patients in a very heterogeneous group, the criteria used to

determine whether the patient was resistant or sensitive to L-Asp were not

described by Haskell.

In order to study the effect of monotherapy with L-Asp on leukemic blasts we

used PEG-Asp. The effectivity of different L-Asp products like Erwinase, E coli, or

PEG-Asp is the same if the serum enzyme activity of L-Asp is higher than 100

IU/L.13 We studied whether baseline levels or up-regulated levels of AS mRNA

expression in leukemic cells after an in vivo treatment with PEG-Asp monotherapy

were associated with short-term clinical response to this drug in children with ALL.

The baseline AS expression levels were in the same range as healthy controls, as

reported before.9 Up-regulation of AS mRNA occurred already within 24 hours after

PEG-Asp exposure and thereafter no further changes were found. Because the

drop in leukemic cells was seen during the whole window period (Figures 2.1 and

2.2), it is unlikely that only leukemic cells resistant to PEG-Asp with intrinsic higher

AS expression levels were left over on day -4. Baseline and L-Asp induced AS

mRNA expression levels did not differ between patients with good, intermediate, or

poor response (Figure 2.3). So, L-Asp-induced up-regulation of AS mRNA is not

related to early in vivo blast reduction in childhood ALL and thus not predictive for

the short-term clinical response to L-Asp. As mentioned earlier, cell line studies

showed that mRNA, protein, and activity levels of AS are correlated,6,7,23 but at

present it is unknown whether this is also the case for clinical samples because

only limited amounts of patients' samples can be obtained.

Immunophenotypic and genetic abnormalities are related to drug resistance

and outcome in childhood ALL.25-27 T-ALL cells from children are, in vitro, more

resistant to L-Asp than cells from children with precursor B-lineage ALL.28 The

relative resistance to L-Asp of T-ALL cases can not be explained by altered

expression of the AS gene, since both baseline and L-Asp induced changes in AS

mRNA expression did not differ between T- and c/pre-B-ALL patients (Figure 2.4).

Remarkable was the finding that 3 out of 12 children with T-ALL even

demonstrated a slight AS mRNA down-regulation, which would, in vitro, even point

to sensitivity for L-Asp. Hyperdiploidy and the TEL-AML1 fusion are related to

favorable outcome in childhood ALL,26,29 and are both in vitro sensitive to L-

Asp.9,30,31 In a previous study in TEL-AML1 positive ALL, Stams et al.9 showed that

TEL-AML1 positive children expressed 5-fold more AS mRNA compared to TEL-

AML1 negative patients and healthy controls. In the present study, TEL-AML1 and

hyperdiploid cases do not show an impaired in vivo up-regulation of AS that might

have explained their high sensitivity to L-Asp. Taken together, both studies

suggest that sensitivity to L-Asp as found in TEL-AML1 positive and hyperdiploid

cells is not linked to decreased AS mRNA expression.
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Figure 2.4 Relationship between immunophenotype and asparagine synthetase (AS)
mRNA expression

(A) Baseline AS mRNA expression levels. (B) PEG-Asp induced changes in AS expression levels in
ALL cells. Dots represent individual expression values; solid lines, represent the median
expression value per group.

AS mRNA up-regulation in ALL cells occurs very rapidly (< 24 hours) after

cellular asparagine depletion following PEG-Asp administration. Amino acids are

required for protein synthesis, but they also play a role in the control of gene

expression.6,20 The promotor of AS contains a nutrient-sensing response unit

(NSRU) that is responsible for the induction of AS gene transcription upon amino

acid deprivation.32 Iiboshi et al. showed that withdrawal of asparagine and

glutamine by L-Asp resulted in a rapid inactivation of p70 S6 kinase.33 P70 S6

kinase participates in the mammalian target of rapamycin (mTOR) protein

synthesis by controlling translational initiation and elongation factors as well as

protein kinases that affect ribosomal assembly. Recently, gene expression profiling

revealed that L-Asp resistant ALL cells overexpressed several ribosomal protein-

encoding genes as well as initiation factors.34 Using gene expression profiling, Fine

et al. showed that L-Asp resistant cell lines expressed more baseline AS mRNA
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than sensitive leukemic cell lines, whereas no such association was found for

primary pediatric ALL samples.35 This study emphasizes the fact that leukemic cell

lines and primary samples from leukemic patients are different from each other

and cell line data can not be extrapolated to primary patient's cells that easily.

Exposure to L-Asp altered in primary patient's samples the expression of a number

of genes related to protein synthesis (ie, tRNA synthetases and amino acid

transporters). However, no genes discriminative for L-Asp resistance in patient's

samples were found. These data point to a consistent coordinated response to

amino acid starvation, which occurs irrespective of the level of resistance to L-Asp

in patient's cells. Therefore, AS up-regulation may be a consequence of amino acid

deprivation by L-Asp but is not the limiting key-factor explaining resistance to L-

Asp in pediatric ALL.

We conclude that up-regulation of AS mRNA in childhood ALL cells occurs within

24 hours after in vivo exposure to PEG-Asp, but these up-regulated levels are not

associated with an early (poor) response to PEG-Asp in this small group of

children.
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ABSTRACT

L-Asparaginase is an effective drug for treatment of

children with acute lymphoblastic leukemia. The

effectiveness is thought to result from depletion of

asparagine in serum and cells. We investigated the

clinical response in vivo of 1000 IU/m2 PEG-

Asparaginase and its pharmacokinetic,

pharmacodynamic and intracellular effects in

children with newly diagnosed ALL before start of

combination chemotherapy. The in vivo window

response was significantly related to

immunophenotype and genotype: 26/38

common/pre B–ALL cases, especially those with

hyperdiploidy and TEL-AML1 rearrangement,

demonstrated a good clinical response compared to

8/17 T-ALL (P = 0.01) and BCR-ABL positive ALL

(P = 0.04). A poor in vivo clinical window response

was related to in vitro resistance to L-Asparaginase

(P = 0.02) and both were prognostic factors for

long-term event-free survival (Hazard ratio 6.4;

P = 0.004 and Hazard ratio 3.7; P = 0.01). After

administration of one in vivo dose of PEG-

Asparaginase no changes in apoptotic parameters

or in intracellular levels of twenty amino acids in

leukemic cells could be measured, in contradiction

to the changes found after in vitro exposure. This

may be explained by the rapid removal of apoptotic

cells from the circulation in vivo. One additional

dose of PEG-Asparaginase upfront ALL treatment

did not lead to other severe toxicities.
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INTRODUCTION

L-Asparaginase is an effective drug to treat newly diagnosed acute lymphoblastic

leukemia (ALL).1 Prolonged L-Asparaginase intensification significantly improved

the outcome of ALL patients as was demonstrated in the Dana-Farber Cancer

Institute ALL Consortium Protocol 91-01.2 Several studies have shown that in vitro

resistance to this drug is an independent prognostic factor in ALL.3-8 Also a poor

early in vivo response to L-Asparaginase as a single drug has been linked to an

unfavourable outcome in pediatric ALL.9

The administration of L-Asparaginase results in the deamination of asparagine

into aspartic acid leading to a rapid and complete depletion of serum asparagine,

which ultimately affects the intracellular asparagine levels.10,11 L-Asparaginase also

has 3 - 4% glutaminase activity leading to serum glutamine depletion.12

L-Asparaginase enzymatic activity should be > 100 IU/L in order to sufficiently

diminish the asparagine serum levels required to induce leukemic cell kill.13 Amino

acid deficiency impairs protein synthesis and leads to apoptosis and cell death.14

In vitro studies demonstrated that cellular deprivation of asparagine and

glutamine leads to increased levels of asparagine synthetase.15 This enzyme

opposes the action of L-Asparaginase and, thereby can rescue cells from the effect

of L-Asparaginase.16 Human leukemia cell line studies suggested that only

L-Asparaginase resistant cells upregulate the activity of asparagine synthetase.15

However, we recently demonstrated that up-regulation of asparagine synthetase

mRNA occurs in both sensitive and in resistant cases within 24 hours of in vivo

exposure to L-Asparaginase.17 These data imply that mechanisms other than

increased expression levels of asparagine synthetase contribute to cellular

L-Asparaginase resistance.

Recently, gene expression profiling studies by microarray analysis revealed that

leukemic cells of L-Asparaginase resistant ALL patients express higher levels of

genes involved in protein synthesis than L-Asparaginase sensitive cells.18 A

deficiency in amino acids finally induces apoptosis in malignant cells.

L-Asparaginase activates caspase 3 and inactivates poly-ADP-ribose-polymerase

(PARP) in patients leukemic cells and resistance to L-Asparaginase is linked to an

impaired capacity of cells to trigger the apoptotic pathway.19 Hypothetically, an

altered intracellular amino acid composition might rescue cells from the effects of

L-Asparaginase. It is yet unknown whether the amino acid metabolism of

L-Asparaginase differs between resistant and sensitive leukemic cells of patients.

In the present study we investigated pharmacokinetic and pharmacodynamic as

well as intracellular effects of one in vivo dose of pegylated-L-Asparaginase

(PEG-Asparaginase) in children with newly diagnosed ALL. In vivo response to

PEG-Asparaginase was monitored by analyzing the decrease in leukemic cells

during a therapeutic window of 5 days before start of combination chemotherapy.

In vivo response to PEG-Asparaginase was compared with the baseline as well as

PEG-Asparaginase-induced changes in serum and intracellular amino acid levels

and with parameters of apoptosis. In vitro resistance to L-Asparaginase was

determined and compared to the mentioned factors that might influence drug
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resistance. In addition, the influence of PEG-Asparaginase given upfront regular

antileukemic treament was evaluated on the incidence of allergic reactions during

treatment and changes in hemostasis.

METHODS

Patients and treatment

In close collaboration between our institution and the Dutch Childhood Oncology

Group (DCOG), a window study with PEG-Asparaginase upfront to the ALL-9

treatment schedule was initiated in July 2000. The ALL-9 protocol was based on the

ALL-6 treatment strategy of the DCOG.20 Non-high risk ALL was defined as white

blood count (WBC) < 50 x 109 /L, no mediastinal mass, absence of t(9;22), t(4;11)

or other MLL rearrangements, no T-cell phenotype and no central nervous system

(CNS) or testicular involvement. All other leukemias were defined as high risk.

Eligible for the window study with PEG-Asparaginase were children with newly

diagnosed ALL and presenting WBC > 10 x 109 /L. Patients received a single dose

of 1000 IU/m2 PEG-Asparaginase in an one hour infusion 5 days before starting

combination chemotherapy. PEG-Asparaginase (Oncaspar), kindly provided by

Medac (GmbH, Hamburg, Germany), was used because of its lower

immunogenicity than native (unpegylated) L-Asparaginase,21 which was important

since native E. coli L-Asparaginase was used as part of the regular combination

chemotherapy given after the investigational window.

The window study with PEG-Asparaginase was approved by the local ethical

committee and by the institutional research board of the DCOG. The patient and/or

the parents/guardians gave informed consent for this study.

The immunophenotyping and cytogenetic characterizations were performed at

the central reference laboratory of the DCOG and at laboratories of the participating

centers. B-lineage ALL (CD19+, HLA-DR+) was classified into the following

differentiation stages: proB-ALL cells were CD10-, cytoplasmic μ chain – (cμ-) and

surface immunoglobulin– (sIg-); c-ALL cells were CD10+/cμ-/sIg-; pre-B cells were

CD10+or-/cμ+/sIg-. B-ALL cells characterized by CD10-/cμ-/sIg+ were excluded from

the study. Cytogenetic analyses were done by regular karyotyping and FISH.22

Patient samples

Bone marrow and peripheral blood samples were obtained at initial diagnosis of

ALL before the administration of PEG-Asparaginase. Serum and leukemic cells from

peripheral blood were collected one hour after the end of the infusion with PEG-

Asparaginase and thereafter daily during 5 consecutive days till the start of

combination chemotherapy at day 0. Mononuclear cells were isolated by density

gradient centrifugation using Lymphoprep (density 1.077 g/ml; Lucron

bioproducts, Gennep, The Netherlands) as described before.17 Contaminating non-

leukemic cells were removed by immunomagnetic beads as described earlier.23 All

samples contained over 90% of leukemic cells, as determined morphologically on

May-Grünwald-Giemsa (Merck, Darmstadt, Germany) stained cytospins.
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Clinical response

In correspondence with the definition of the window response to prednisone in

ALL24 the clinical window response to PEG-Asparaginase on day 0 (5 days after the

PEG-Asparaginase infusion) was defined as good when the number of leukemic

cells was < 1 x 109 /L of peripheral blood, as intermediate when leukemic cells

were 1 - 10 x 109 /L, and as poor when leukemic cells were > 10 x 109 /L.

In vitro cytotoxicity

In vitro L-Asparaginase cytotoxicity in leukemic cells taken at initial diagnosis

(untreated) was determined using the MTT assay. Cells were exposed to six

different concentrations of L-Asparaginase (Paronal, Christiaens B.V., Breda, The

Netherlands) ranging from 0.0032 - 10 IU/ml in duplicate. Control cells were

cultured without L-Asparaginase. After four days of incubation at 37 °C in

humidified air containing 5% CO2, the MTT-assay was performed. Drug sensitivity

was assessed by the LC50, the drug concentration lethal to 50% of the cells.

Evaluable assay results were obtained when a minimum of 70% of leukemic cells

was present in the control wells after 4 days of incubation and when the control

OD was  0.050.8

In vitro sensitivity towards L-Asparaginase was defined as LC50  0.033 IU/ml,

in vitro resistance towards L-Asparaginase was defined as LC50  0.912 IU/ml, and

intermediate sensitive was defined as LC50 0.033 - 0.912 IU/ml.8

Since LC50 values were highly correlated between Paronal and L-Asparaginase

Medac (Rs 0.93, P < 0.002) and between Paronal and PEG-Asparaginase

(Oncaspar) (Rs 0.86, P < 0.002) all consecutive MTT-assays were performed

using Paronal.3,8

Apoptotic features

Determination of Annexin V, DIOC6, cleaved-caspase-3 and cleaved-PARP were

done by FACS analysis as described earlier.19

For ex vivo exposure to L-Asparaginase, cells were incubated with culture

medium as control or incubated with 10 IU/ml of L-Asparaginase (Paronal) in

culture medium. 5 x 106 cells were harvested after 18, 24, 30 and 44 hours of

incubation with L-Asparaginase and apoptotic markers were analyzed.

L-Asparaginase activity and amino acid levels in serum

Serum levels of L-Asparaginase and asparagine, glutamine, aspartic acid and

glutamic acid were determined in the laboratory of Prof Dr J. Boos (University

Children's Hospital Muenster, Department of Pediatric Hematology/Oncology,

Germany). Blood samples were taken daily from day -5 to day 0, and twice a week

from day 0 to 28. L-Asparaginase activity was analyzed as described before;25

serum levels of asparagine, aspartic acid, glutamine and glutamic acid were done

using HPLC.26 The lower limit of detection was 0.2 µM for all amino acids;

glutamine levels higher than 250 µM were not further analyzed and reported as

> 250 µM. The serum levels of asparagine and the L-Asparaginase activity in a

part of the patients included in the present study have been published before.27
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Intracellular amino acid levels

Intracellular levels of all essential and non-essential amino acids were measured

by liquid column chromatography on a Biochrome 20 amino acid analyzer with

ninhydrin detection (Biochrome, Cambridge). Blood samples were taken daily from

day -5 at diagnosis to day 0. At each time-point 5 x 106 leukemic cells were lysed

in 100 l of lysis buffer (150 ml NaCl, 30 mM Tris (pH 7.6), 10% glycerol, 1%

Triton X-100, 1 mM PMSF, 2 μg/ml aprotinin, 2 μg/ml leupeptine) for 15 minutes

on ice. Cleared supernatants were stored at -80 0C until the time of analysis. The

intracellular amounts of amino acids were expressed as mol of amino acid per mg

of protein. The lower limit of detection was 7 mol (coefficient of variation 10%).

Intracellular protein content was measured using the bicinchoninic acid (BCA)

assay (Interchim Omnilabo28).

For ex vivo exposure to L-Asparaginase, cells were incubated with culture

medium as control or incubated with 0.1 IU/ml or 10 IU/ml of L-Asparaginase

(Paronal) in culture medium. 5 x 106 cells were harvested after 1, 3, 6, 24, and

30 hours, and if possible after 48 and 72 hours of incubation with L-Asparaginase

and amino acid levels were analyzed.

Clinical toxicity

Clinical manifestations of diabetes mellitus, pancreatitis, hyperlipidemia,

neurotoxicity and stroke were monitored. Changes in coagulation and fibrinolysis

were monitored throughout induction therapy. On day -5, day 0 and during

induction on days 29, 33, 36, 40 and 43 peripheral blood samples were collected

from the infusion line just before each Paronal® infusion. All coagulation assays

were done with commercially available reagents and methods as described in

detail previously.29 Reference values were applied from the literature.30-32

Statistics

Differences between multiple groups were calculated using the Kruskal-Wallis test.

The Mann-Whitney U test was used when 2 groups were compared. P = 0.05 (two

sided) was used as level of significance.

Median follow-up time of patients at risk of an event was 4.1 years (range 1.9

to 5.5 years). Event-free survival defined as relapse-free survival was calculated

according to Kaplan Meier (± SE). Multiple regression was conducted using Cox

proportional hazards regression models to assess prognostic factors for event-free

survival.

RESULTS

Patients

Between July 2000 and July 2004, 57 children with newly diagnosed ALL were

enrolled in the PEG-Asparaginase-window study (Table 3.1). Since only patients

with initial WBC > 10 x 109 /L were eligible for this study, more than half of these

children were high-risk patients according to ALL-9 criteria.
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Table 3.1 Patient characteristics of PEG-Asparaginase window study

Clinical response

Administration of PEG-Asparaginase at day -5 resulted in a steadily drop in the

number of leukemic cells in the peripheral blood over 5 consecutive days. The

median leukemic cell count was reduced 192-fold from 34.5 x 109 /L at day -5 to

0.18 x 109 /L at day 0 (Figure 3.1). 35 (61%) out of 57 children were defined as

good responders to PEG-Asparaginase, 16 (28 %) were intermediate responders

and 6 (11 %) children were poor responders.

The good prognostic genotypes (hyperdiploid and TEL-AML1 / t(12;21) positive

ALL) were associated with a good clinical window response, whereas the poor

prognostic genotype BCR-ABL / t(9;22) was associated with a poor clinical window

response (P = 0.04) (Table 3.2). The 17 T-ALL patients had a significant poorer

response to PEG-Asparaginase compared to the 36 common/pre B cases (P =

0.01).

Table 3.2 Correlation between clinical response to one dose of PEG-Asparaginase and
immunophenotype and genotype in 57 children with newly diagnosed ALL

Clinical response of 57 children with ALL to one dose of PEG-Asparaginase upfront ALL-induction
treatment (day –5), related to immunophenotype and genotype. The clinical response to PEG-
Asparaginase on day 0 was defined as good when the number of leukemic cells had declined to
< 1 x 109/L of peripheral blood, as intermediate when leukemic cells were 1 - 10 x 109/L, and as
poor when leukemic cells were > 10 x 109/L.

Patients included 57

Male/female 36/21

Age (years) median (range) 4.9 (1.4 - 15.1)

WBC (109/L) median (range) 44.4 (11.3 - 417)

Non high risk/high risk 27/30

Immunophenotype (57):

pro B ALL 2

common/pre B ALL 38

T ALL 17

Genotype of precursor B ALL (40):

Hyperdiploid (> 50 chromosomes) 11

TEL-AML1/t(12;21) 8

BCRABL/t(9;22) 2

MLL rearranged (11q23 ) 0

Normal (46 XX/XY) 8

others 11

Pro B Common/pre B T total

MLL

germline

MLL

rearranged

TEL-AML1 hyperdiploid other BCRABL -

Good responder 1 7 7 12 8 35

Intermediate

responder

1 1 3 4 7 16

Poor responder 2 2 2 6

Total 2 0 8 10 18 2 17 57
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Figure 3.1 Clinical response to one dose of 1000 IU/m2 PEG-Asp
PEG-Asp was administered intravenously at day -5, i.e. 5 days upfront regular chemotherapy. A
good clinical response to PEG-Asparaginase was defined as < 1 x 109/L leukemic cells in the
peripheral blood at day 0, an intermediate response was defined as 1 - 10 x 109/L, and a poor
response as > 10 x 109/L leukemic cells in the peripheral blood at day 0. The data of individual
patients are given in gray, medians with ranges (25th and 75th percentiles) are drawn in black.

In vitro cytotoxicity of L-Asparaginase was measured in 41 leukemic cell samples.

Children with a poor or intermediate in vivo response to PEG-Asparaginase

treatment had a median LC50 value of 1.0 IU/ml compared to 0.04 IU/ml for

children with a good clinical response. So poor and intermediate responders were

in vitro 25 fold more resistant to L-Asparaginase (P = 0.02) than children with a

good in vivo response (Figure 3.2). In concordance with earlier studies,33 T-ALL

cells were significantly more in vitro resistant to L-Asparaginase than precursor B-

ALL cells (LC50 median 1.22 IU/ml versus 0.10 IU/ml; P < 0.001). Only one 8-

year old girl with T-ALL and an initial WBC of 132 x 109 /L had a poor clinical

response (WBC 25 x 109 /L at day 0, absolute leukemic cell count 19.3 x 109 /L),

whereas her blasts were in vitro sensitive to L-Asparaginase. She still is in

continuous complete remission.
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Figure 3.2 Comparison between in vivo and in vitro response to L-Asparaginase:
in 41 children in vitro cytotoxicity of L-Asparaginase (LC50 in IU/ml) was measured and related
to the in vivo response to 1000 IU/m2 PEG-Asparaginase given upfront regular chemotherapy.
Good responders (leukemic cells at day 0 < 1 x 109/L) were significantly more sensitive to L-
Asparaginase than intermediate responders (leukemic cells 1 - 10 x 109/L at day 0) (P = 0.03)
and intermediate and poor responders together (leukemic cells > 1 x 109/L at day 0) (P = 0.02).
The sensitivity to L-Asparaginase did not differ between the intermediate and poor responders.

Apoptosis

Analysis of in vivo induced apoptosis by PEG-Asparaginase

We analyzed 25 patients for different apoptotic parameters in time (Figure 3.3). At

diagnosis samples from 13 patients were available, immediately after the PEG-

Asparaginase infusion samples from 21 patients, and on the consecutive days from

10 - 24 patients. The median percentage of ALL cells showing PS externalisation

was 10.5 % before starting treatment (day -5). These values did not significantly

differ in time (Figure 3.3A). The median percent of cells with changes in

mitochondrial transmembrane potential was small at all time-points: before PEG-

Asparaginase exposure 5.4% cells were DIOC6 positive, this did not change in

time (P = NS) (Figure 3.3B). The median percentage of cells with cleaved (and

hence activated) caspase 3 at diagnosis was 2.7% and remained low (P = NS)

(Figure 3.3C). The median percent of cells with PARP inactivation at diagnosis was

2.9% and remained low (P = NS) (Figure 3.3D).

These data show that the drop in white blood cell count and number of

leukemic cells (Figure 3.1) seen after PEG-Asparaginase administration was not

simultaneously associated with an increase in in vivo apoptotic markers. None of

the apoptotic markers was linked to immunophenotype or genotype.
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Figure 3.3A-D In vivo induced apoptosis registered before and during a five day period
after the administration of 1000 IU/m2 PEG-Asparaginase upfront regular chemotherapy. Percent
of cells with PS externalisation (Figure 3.3A), with m depolarisation (Figure 3.3B), caspase 3
activation (Figure 3.3C) and PARP inactivation (Figure 3.3D) are shown.

Analysis of in vitro induced apoptosis by L-Asparaginase

In contrast to data obtained after in vivo exposure, significant changes in apoptotic

parameters were detected after in vitro exposure to L-Asparaginase (Figure 3.3E).

This is in correspondance with earlier studies showing that activation of these

apoptotic markers can be measured after in vitro exposure to L-Asparaginase.19

L-Asparaginase activity and levels of amino acids in serum

The median serum level of asparagine before treatment was 38.7 µM (p25th - 75th:

28.1 - 44.9 µM). In all patients serum asparagine levels decreased below the limit

of detection of 0.2 µM after the administration of PEG-Asparaginase (P < 0.001)

(Figure 3.4A and 3.4B). With the exception of two patients these asparagine levels

remained below 0.2 µM until day 21, so for a total of at least 26 days. The

L-Asparaginase activity in the serum was > 100 IU/L for a total of at least 15 days

(Figure 3.4A). The level of serum aspartic acid (Figure 3.4B) increased after 1 hour

of PEG-Asparaginase infusion from 7.1 µM (p25th - 75th: 4.1 -14.3 µM) to 22.1 µM

(p25th - 75th: 15.5 - 47.3 µM) (P < 0.001), followed by a decrease to median 11.7

(p25th - 75th: 7.3 - 21.3 µM) and 15.5 µM (p25th - 75th: 9.6 - 23.5 µM) at day -3

and day 0. Compared to the level measured at 1 hour after the PEG-Asparaginase

A B

C D
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infusion the serum aspartic acid levels were still increased at both time points (P =

0.02 at day -3 and P = 0.05 at day 0).

Most glutamine levels stayed beyond the upper limit of detection (> 250 µM)

after PEG-Asparaginase treatment (Figure 3.4B). However, glutamic acid levels

significantly increased from median 87.6 µM (p25th - 75th: 57.8 - 124 µM) before

treatment to 310 µM (p25th - 75th: 178 - 396 µM) one hour after therapy (P <

0.001), and to 239 µM (p25th - 75th: 125 - 306 µM) at day -3 (P < 0.001) and 159

µM (p25th - 75th: 127 - 300 µM) at day 0 (P < 0.001) (Figure 3.4B).

The serum peak levels of PEG-Asparaginase did not differ between clinical

response groups. No correlation with age was observed.

Intracellular amino acids levels

In vivo PEG-Asparaginase exposure

Intracellular levels of 20 different amino acids were measured in leukemic cells of

19 children with newly diagnosed ALL and in peripheral blood cells of 9 healthy

control children without bone marrow disease. The protein concentration of ALL

cells was median 176 µg/ml (25th - 75th percentile: 146 - 226 µg/ml) (n = 9),

which significantly differed from the protein content of mononuclear peripheral

blood cells of normal controls (447 µg/ml; 25th - 75th percentile: 347 - 568 µg/ml)

(P < 0.0001). The amino acid levels were therefore expressed as mol per mg of

cellular protein.

The intracellular levels for 16 out of 20 amino acids did not differ between the

ALL cells at diagnosis and normal controls (Table 3.3). Aspartic acid (P < 0.05),

glutamic acid (P < 0.05) and cystathionine (P < 0.01) were 2-fold higher in ALL

compared to normal controls, whereas taurine levels were 5.4-fold lower in

leukemic cells (P < 0.001). PEG-Asparaginase did not affect the intracellular amino

acid levels in time (Table 3.3), as is shown also in Figure 3.5A for asparagine,

aspartic acid, glutamine and glutamic acid.

Figure 3.3E In vitro induced apoptosis after exposure to 10 IU/ml L-Asparaginase over
time for 2 patients.

E
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Figure 3.4A PEG-Asparaginase activity and asparagine levels
The effect of 1000 IU/m2 PEG-Asparaginase administered i.v. 5 days upfront regular
chemotherapy on serum asparagine levels in time. The levels of PEG-Asparaginase (left Y-axis in
IU/L) are given in black, the levels of asparagine (right Y-axis in M) in gray; the lower dotted
line is the detection limit of asparagine, the upper dotted line is the reference L-Asparaginase
activity level of 100 IU/L.

The intracellular amino acid levels at diagnosis and the in vivo response to PEG-

Asparaginase did not correlate (Figure 3.6, Table 3.4). Results were borderline

significant for leucine, but not significant if adjusted for multiple testing. One

remarkable difference demonstrated valine, which was 2 times higher in non-

responding patients.

Since amino acid levels did not change in time, the relation between clinical

response and amino acid levels in time was not further evaluated.

In correspondence with the in vivo data, the levels of intracellular amino acids

did not significantly differ between in vitro L-Asparaginase resistant and sensitive

patients (Table 3.4).

In vitro L-Asparaginase exposure

In contrast to the lack of in vivo intracellular depletion of asparagine and

glutamine (Figure 3.5A), significant intracellular depletion was detected after in

vitro exposure to L-Asparaginase. Leukemic blasts of 6 patients were in vitro

exposed to 0.1 IU/ml L-Asparaginase, 10 IU/ml L-Asparaginase and to culture

medium only as control, and analyzed before exposure and during 72 hours after

exposure. Significant intracellular asparagine depletion was observed with 0.1

IU/ml (data not shown) and 10 IU/ml of L-Asparaginase at all time points tested (P

< 0.05) (Figure 3.5B). Only after exposure to 10 IU/ml of L-Asparaginase,

intracellular glutamine levels declined significantly within 3 hours (P < 0.001),

whereas no significant rise in glutamic acid could be observed (Figure 3.5B).

A
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Figure 3.4B Effect of PEG-Asparaginase on serum amino acid levels
Asparagine, aspartic acid, glutamine and glutamic acid were measured in 24 children with newly
diagnosed ALL before and after in vivo administration of one dose of 1000 IU/m2 PEG-
Asparaginase. Significant changes between the levels at diagnosis and 1 hour after the
administration of PEG-Asparaginase are indicated by P < 0.001.

Clinical toxicity

No clinical toxicity related to PEG-Asparaginase was seen during the window

phase. At day 29 of the induction phase in which patients received twice-weekly

Paronal, one patient out of 57 patients experienced a period of diabetes mellitus.

Another child was diagnosed with transient hyperlipidemia. No clinical signs of

pancreatitis, severe neurotoxicity or thrombotic events were observed.

Allergic reactions

Four infusions with Paronal were planned during induction on day 29, 33, 36 and

40, and only the 30 high-risk patients were scheduled to receive 9 additional

Paronal infusions during intensification after 3 months.

No child demonstrated an allergic reaction to the first Paronal infusion on day

28. One out of 57 children had a grade 3 allergic reaction on the second infusion.

Treatment was switched to Oncaspar and could not completely be finished. So

56/57 patients received the total of four Paronal gifts during induction.

B
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Figure 3.5A 4 intracellular amino acid levels in time in vivo
In vivo effect of one dose of 1000 IU/m2 PEG-Asparaginase on serum amino acid levels of
asparagine, aspartic acid, glutamine and glutamic acid measured in leukemic cells of 19 children
with ALL compared to the levels found in peripheral blood cells of 9 healthy control cases. Data
are given as mol/mg of intracellular protein.

One of 30 high-risk patients relapsed within two months after diagnosis and

changed protocol before the intensification phase. 15 of the remaining 29 (52%)

children demonstrated an allergic reaction. 9 of these 15 could complete the

intensification therapy by switching to Erwinase or to Oncaspar. The allergy rate of

52% was not higher than the 81% allergy rate in a group of 16 high-risk patients

treated with the same ALL-9-HR protocol but without the upfront PEG-Asp window.

Changes in hemostasis (Table 3.5)

At diagnosis data point to enhanced thrombin generation. Consumption

coagulopathy was monitored in 17 patients. On day 0, five days after the

administration of 1000 IU/m2 PEG-Asparaginase many coagulation proteins

demonstrated a significant decrease. The decrease in coagulation factors on day 0

was not related to the clinical response to PEG- Asparaginase. The changes in

coagulation parameters before Paronal administration at day 29 and at the end of

induction on day 43 (after 4 doses of Paronal), demonstrated the same pattern as

for patients who did not receive PEG-Asparaginase window treatment, as published

recently.34

A
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Figure 3.5B 4 intracellular amino acid levels in time in vitro
The effect of in vitro exposure to L-Asparaginase on intracellular amino acid levels of asparagine,
aspartic acid, glutamine and glutamic acid of leukemic cells of 6 patients that were in vitro
exposed to 10 IU/ml L-Asparaginase. Asparagine levels (P < 0.05) and glutamine levels (P <
0.001) decreased significantly before and after incubation with L-Asparaginase.

Outcome and prognostic factors

Survival analysis of in vivo response to PEG-Asparaginase showed that clinically

good window responders had a more favourable outcome than clinically poor

window responders (3-year EFS  SE: 91  6% for good, 81  10% for

intermediate and 33  19% for poor responders (median follow-up 4.1 years,

Figure 3.7A). The Hazard ratio for the good and intermediate responders compared

to the poor responders was 6.4 (95% CI 1.81 - 22.86) (Table 3.6). The prognosis

of good and intermediate responders was significantly higher than for the poor

responder group (P = 0.004, univariate analysis). The P-value of the trend analysis

for all three groups was 0.014.

Patients who were in vitro sensitive or intermediate sensitive to L-Asparaginase

had a 3-year EFS of 93  7% and 100%, which is significantly different from the EFS

of 53  13% for the in vitro resistant patients (Figure 3.7B). The Hazard ratio for the

good and intermediate sensitive patients compared to the resistant patients was 3.7

(95% CI 1.3 - 10.7); (P = 0.014) (Table 3.6). The P-value of the trend analysis for

all three groups was 0.16.

B
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Figure 3.6 4 intracellular amino acids related to clinical response
Intracellular amino acid levels (in mol/mg of intracellular protein) of asparagine, aspartic acid,
glutamine and glutamic acid at diagnosis of 19 children with ALL, related to their clinical
response to one dose of 1000 IU/m2 PEG-Asparaginase 5 days later, as defined in Figure 3.1.

Of the other variables including age, sex, WBC, immunophenotype and genotype,

only WBC (> or < 50 x 109 /L) at diagnosis was significantly related to outcome in

the Cox univariate analysis (P = 0.02) (Table 3.6).

In a multivariate analysis, including clinical response, in vitro L-Asparaginase

resistance, age, white blood cell count and immunophenotype, only the clinical

response was an independent risk factor (P = 0.042) (2 trend 6.602, P = 0.0013).

DISCUSSION

In the present study we investigated the effect of a therapeutic window with one

single dose of PEG-Asparaginase before start of combination chemotherapy on

several pharmacodynamic and pharmacokinetic parameters, and on clinical

response in pediatric ALL.

Clinical response

Monotherapy with 1000 IU/m2 caused a gradual decrease of the leukemic cell

burden in most patients within 5 days of treatment (Figure 3.1). Children with

unfavorable characteristics like T-ALL or BCR-ABL / t(9;22)-positive ALL were in

vivo more resistant to PEG-Asparaginase than children with a more favorable

immunophenotype and genotype. This is in concordance with the fact that T-ALL

cells were found to be in vitro more resistant to L-Asparaginase.33 For BCR-ABL /

t(9;22) the in vivo resistance to L-Asparaginase is a new finding. In the present

study we also showed that in vitro resistance to L-Asparaginase is related to the

clinical response to PEG-Asparaginase as single drug.
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Figure 3.7A EFS and clinical response
Relationship between event free survival (EFS) and clinical response to the PEG-Asparaginase
window. The prognosis differed between good and intermediate responders compared to poor
responders (P < 0.01).

Figure 3.7B EFS and in vitro sensitivity
Relationship between event free survival (EFS) and in vitro sensitivity to L-Asparaginase. The
prognosis differed between the sensitive and intermediate sensitive group compared to the
group resistant to L-Asparaginase (P < 0.01).

Parameters of apoptosis

Apoptotic markers at diagnosis did not predict the clinical response. We were not

able to demonstrate a change in the percentage of in vivo apoptotic cells after

administration of PEG-Asparaginase. If however, ALL cells were in vitro exposed to

L-Asparaginase, a significant increase in time of the apoptotic markers was found,

confirming previous findings.19 Together with the fact that there was a rapid

decrease in leukemic cells upon in vivo PEG-Asparaginase exposure, these findings
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indicate that apparently no apoptotic cells remain in the circulation in vivo. Most

likely, these apoptotic cells are rapidly being removed by phagocytosis.35

L-Asparaginase activity in serum and intracellular amino acids

One dose of 1000 IU/m2 PEG-Asparaginase immediately resulted in complete

serum asparagine depletion with a concomitant rise in serum aspartic acid and

glutamic acid. Our data are in correspondence with previous data observed in a

larger group of patients treated with L-Asparaginase and confirm that PEG-

Asparaginase will yield its pharmacodynamic effects for 2 - 4 weeks.36 However, in

vivo no changes were observed in the levels of intracellular amino acids (including

asparagine, aspartic acid, glutamine and glutamic acid) directly after PEG-

Asparaginase administration nor on successive days thereafter, except for valine.

So far, no explanation can be given for the high level of valine in the non-

responding group. In contrast, in vitro exposure to L-Asparaginase of ALL cells

significantly changed the intracellular asparagine and glutamine levels that

reflected the changes observed in serum suggesting that the surviving leukemic

cells are capable of keeping the intracellular amino acid pools in balance, whereas

those cells that are not capable of doing so die and are immediately removed from

the blood circulation. Therefore the in vivo process of intracellular amino acid

depletion in leukemic cells can not be measured which is in correspondence with

the finding that no in vivo effect on apoptosis parameters could be measured.

These data underline the fact that only in vitro studies have been published that

show a relationship between amino acid depletion and apoptosis,37,38 whereas

literature on in vivo measurements is lacking.

Iwamoto et al.39 recently described the protective effect of mesenchymal cells

in L-Asparaginase cytotoxicity. They postulated that the interaction between ALL

cells and the microenvironment in which these cells reside protected the leukemic

cells from asparagine depletion by a high expression of asparagine synthetase in

these mesenchymal cells. Surviving leukemic cells may therefore be rescued with

asparagine produced by mesenchymal cells. There was no correlation between the

upregulation of asparagine synthetase mRNA and the amount of asparagine in the

leukemic cells (data not shown). This might support the hypothesis that

asparagine and perhaps other amino acids are supplied to leukemic cells by the

microenvironment.

Another possible explanation for the discrepancy of cellular asparagine levels in

vivo and in vitro comes from the Italian group of Bussolati.40,41 In vitro

L-Asparaginase rapidly hydrolyzes asparagine and subsequently glutamine if

asparagine is depleted.42 Since the main amino group for in vivo asparagine

synthesis is provided by glutamine, depletion of glutamine impacts endogenous

asparagine synthesis. However, glutamine is abundantly present in vivo, and

hence a donor for the amino group needed for asparagine synthesis is not lacking.

This theory might also explain our finding that asparagine remains detectable in

leukemic blasts after in vivo exposure to PEG-Asparaginase. Not only Boos et al.42

but also Fine et al.43 emphasized the fact that leukemic cell lines and primary



Pharmacokinetic and pharmacodynamic effects of PEG-Asp

51

samples from leukemic patients are different from each other and cell line data

cannot be extrapolated to primary patients' samples that easily.

At diagnosis the intracellular levels of glutamic acid and cystathionine were

higher and taurine levels were lower in leukemic cells compared to normal

peripheral blood mononuclear cells. Proliferating leukemic cells may produce more

glutamic acid due to a fast turnover of glutamine to provide nitrogen and carbon

needed for the synthesis of purines and pyrimidines energy metabolism.44 It is

known that malignant cells are more dependent on an exogenous source of

asparagine and glutamine than normal cells.45

The high levels of cystathionine and low levels of taurine may be linked to each

other. Leukemic cells were shown to have consistently lower taurine levels

compared to normal lymphocytes and granulocytes.46 A low activity of

-cystathionase in leukemic cells might result in an abnormal methionine-cysteine

pathway leading to higher levels of its starting product cystathionine and lower

levels of the end product taurine.

Chakrabarti et al.47 also tried to explain differences in L-Asparaginase

resistance by differences in intracellular amino acid metabolism. They pointed to a

hypothesis of Ryan and Keefer, that depletion of asparagine might result in

decreased glycine and serine concentrations in L-Asparaginase sensitive but not in

resistant tumor cells.48,49 Asparagine is required for the transamination of

glyoxylate resulting in glycine and serine depletion, which could have severe

consequences for purine biosynthesis.47 However, we did not find evidence to

support these hypotheses since we found no difference in the serine or glycine

content between in vivo good and poor responders to L-Asparaginase nor between

in vitro L-Asparaginase sensitive and resistant leukemic cells.

It has also been suggested that L-Asparaginase treatment caused reduced

incorporation of valine into proteins in L-Asparaginase sensitive cells but not in

L-Asparaginase resistant tumor cells.50 In our group valine levels before

L-Asparaginase treatment were 2 times lower in in vivo good/intermediate

responders compared to poor responders. However, no difference in the level of

valine between in vitro L-Asparaginase resistant and sensitive ALL cells were

observed in the present study.

Clinical toxicity, allergic reactions and changes in hemostasis

There was no acute toxicity of one dose of PEG-Asparaginase in this investigational

window. One extra dose of PEG-Asparaginase did not lead to higher incidence of

allergic reactions during induction treatment and also not during intensification

therapy 3 months later. This is of importance since Silverman et al. proved that

L-Asparaginase tolerance is an important prognostic factor in ALL.2

The single dose of PEG-Asparaginase in this study induced a fall in more than

half of the coagulation proteins. We demonstrated that the serum asparagine

depletion due to one PEG-Asparaginase infusion of 1000 IU/m2 lasted about 4

weeks. This did not result in a persistent inhibition of coagulation protein

synthesis. At day 29, so almost 5 weeks after PEG-Asparaginase administration, all

coagulation parameters had recovered to normal or even increased levels. The
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levels of all coagulation parameters were in the same range as investigated

recently in children treated with the same protocol without the PEG-Asparaginase

window.34 Disturbances in hemostasis due to amino acid depletion are probably a

local effect, i.e. in the liver only.51,52

Outcome and prognostic factors

Both the clinical response to PEG-Asparaginase window therapy and the in vitro

sensitivity to L-Asparaginase are predictive for outcome. The prognostic relevance

of the in vitro sensitivity has been shown previously.5-8 In the present study we

also show that the in vivo response to a window with L-Asparaginase predicts

outcome, which is in concordance with the data of Asselin et al.9 These results

suggest that children with ALL with a poor clinical response to PEG-Asparaginase

might benefit from a more intensive antileukemic therapy.

CONCLUSION

The clinical response to one dose of 1000 IU/m2 PEG-Asparaginase intravenously

as an investigational window is an independent prognostic marker related to

outcome. Children with the favorable common/pre B ALL especially those with TEL-

AML1 positivity and hyperdiploidy show a good clinical response to PEG-

Asparaginase and children with the prognostic unfavorable factors T-cell

immunophenotype or BCR-ABL positivity have a relatively poor response to PEG-

Asparaginase. The in vivo response to PEG-Asparaginase correlates well with in

vitro sensitivity to L-Asparaginase. Intracellular changes in apoptotic features and

amino acids in ALL cells can not be monitored in vivo; this may be explained by

the fact that apoptotic cells are immediately removed from the circulation by

phagocytosis. Otherwise it is possible that in vivo mesenchymal cells from the

bone marrow supply leukemic blasts with asparagine in response to treatment with

L-Asparaginase. Intracellular amino acids concentrations at diagnosis are not

related to PEG-Asparaginase response. One additional dose of PEG-Asparaginase

proved to be safe in children with ALL because it did not cause a higher incidence

of allergic reactions to L-Asparaginase further on in treatment and it caused no

severe toxicities.



Table 3.3 The effect of one single dose of PEG-Asp on intracellular amino acid levels in newly diagnosed ALL

ALL patients Normal controls

WINDOW days -5 (before

Asparaginase)

-4 -3 -2 -1 0

Medians in μmol/mg (p25 - p75)

Essential

amino acids

Isoleucine 5.6 (4.0 - 7.7) 6.0 (3.7 - 8.6) 6.1 (3.6 - 6.8) 6.3 (4.6 - 6.9) 6.2 (4.1 - 7.3) 7.0 (3.2 - 7.6) 5.0 (2.2 - 5.5)

Leucine 4.8 (3.0 - 7.9) 3.4 (2.7 - 6.5) 4.5 (3.1 - 5.7) 4.2 (3.5 - 7.3) 5.5 (4.0 - 6.2) 4.6 (2.7 - 7.0) 8.4 (4.4 - 8.8)

Lysine 4.9 (3.7 - 7.3) 4.6 (3.0 - 5.2) 5.0 (3.7 - 5.5) 3.6 (3.2 - 6.0) 5.3 (3.2 - 7.1) 4.5 (3.8 - 5.9) 7.7 (4.2 - 12.0)

Phenylalanine 3.3 (3.0 - 4.7) 3.6 (2.2 - 4.5) 3.8 (3.0 - 4.4) 4.7 (3.2 - 5.8) 3.9 (2.9 - 5.1) 4.6 (2.3 - 4.8) 3.1 (2.0 - 3.7)

Methionine 3.3 (2.9 - 4.5) 2.8 (2.4 - 3.1) 3.4 (3.1 - 4.9) 3.5 (2.9 - 4.2) 3.6 (2.7 - 4.6) 3.8 (2.3 - 4.0) 2.8 (2.3 - 3.1)

Threonine 5.5 (3.8 - 7.4) 5.5 (4.4 - 7.6) 5.6 (3.6 - 7.7) 6.3 (4.8 - 7.9) 6.9 (5.4 - 8.1) 6.1 (3.9 - 8.8) 7.1 (4.8 - 7.9)

Tyrosine 3.1 (2.6 - 4.7) 4.0 (3.2 - 5.9) 3.7 (3.1 - 4.1) 3.5 (2.8 - 4.1) 3.8 (3.2 - 4.6) 3.3 (2.5 - 4.0) 3.0 (2.1 - 3.6)

Valine 4.1 (3.2 - 5.9) 3.2 (2.9 - 4.3) 3.5 (3.0 - 4.1) 4.1 (3.0 - 5.5) 3.5 (3.0 - 4.4) 3.9 (2.7 - 4.4) 5.3 (2.8 - 6.7)

Histidine 3.0 (2.3 - 3.3) 2.7 (2.2 - 3.5) 3.1 (2.7 - 3.4) 3.2 (2.9 - 3.6) 2.9 3.1 (2.3 - 3.2) 2.4 (1.4 - 2.7)

Arginine 9.6 (5.9 - 12.0) 8.1 (5.6 - 9.9) 7.9 (5.7 - 9.9) 7.2 (5.2 - 11.0) 8.7 (7.3 - 9.6) 8.2 (5.8 - 11.0) 6.2 (4.1 - 8.1)

Non-essential

amino acids

Alanine 8.8 (5.8 - 11.7) 8.9 (5.9 - 24.3) 9.2 (5.8 - 12.5) 9.2 (7.4 - 13.4) 9.2 (5.9 - 12.2) 11.3 (6.3 - 12.7) 12.9 (8.1 - 18.0)

Asparagine 4.7 (4.0 - 6.6) 4.4 (3.1 - 5.3) 4.5 (3.5 - 5.6) 4.9 (3.8 - 6.9) 4.6 (4.1 - 4.9) 5.0 (4.5 - 5.8) 2.9 (1.0 - 4.1)

Aspartic acid 28.8 (24.5 - 32.7) 26.6 (22.0 - 36.5) 33.4 (21.1 - 43.2) 31.0 (23.5 - 41.5) 29.9 (23.3 - 38.3) 29.7 (23.1 - 42.4) 15.71 (12.6 - 18.2)

Glutamic acid 67.7 (48.5 - 76.2) 68.5 (51.2 - 81.2) 62.0 (47.1 - 95.7) 65.9 (41.2 - 90.6) 81.1 (48.3 - 105) 73.4 (47.2 - 116) 33.11 (29.8 - 43.4)

Glutamine 9.8 (47.4 - 18.6) 13.6 (5.7 - 23.1) 11.8 (6.3 - 22.5) 14.1 (5.5 - 22.1) 16.2 (9.2 - 24.7) 21.8 (8.5 - 27.7) 11.1 (5.8 - 13.8)

Cysthationine 17.4 (13.8 - 22.6) 21.0 (14.3 - 26.1) 23.2 (17.7 - 30.7) 24.2 (16.7 - 37.6) 29.4 (19.7 - 42.6) 28.2 (12.4 - 41.3) 8.32 (7.0 - 10.9)

Glycine 16.0 (11.4 - 20.7) 18.9 (14.1 - 24.4) 22.6 (16.0 - 29.6) 13.8 (12.5 - 21.1) 22.7 (17.0 - 35.7) 21.2 (16.2 - 31.9) 23.7 (16.8 - 25.4)

Proline 9.0 (6.8 - 16.2) 9.7 (6.8 - 14.1) 11.3 (6.9 - 14.0) 8.5 (6.1 - 14.1) 13.2 (9.0 - 15.6) 13.8 (9.2 - 15.6) 5.0 (1.7 - 7.1)

Serine 9.2 (6.0 - 11.0) 9.2 (4.9 - 11.6) 7.5 (4.3 - 11.6) 6.5 (5.8 - 9.9) 11.1 (9.7 - 13.2) 9.5 (9.1 - 13.2) 10.3 (6.9 - 12.5)

Taurine 18.8 (10.2 - 47.3) 22.2 (17.6 - 65.1) 31.2 (16.0 - 71.8) 32.9 (23.0 - 54.0) 32.8 (18.7 - 49.1) 27.1 (16.5 - 52.3) 1343 (111 - 196)

Levels of 20 intracellular amino acids in mol/mg cellular protein in leukemic blasts of 19 patients with ALL after one dose of PEG-Asparaginase, compared to the

levels in peripheral blood cells of 9 normal controls. Data are given as medians with interquartile ranges. The amino acids that demonstrate significant different
levels compared to normal are given in bold. Superscripts refer to P values: 1 = P ≤ 0.05, 2 = P ≤ 0.01 and 3 = P ≤ 0.001 for the comparison of patient data
with normal controls.



Table 3.4 Intracellular amino acid levels at diagnosis related to in vitro and in vivo sensitivity

In vitro

ASP resistant

In vitro

ASP sensitive

In vivo

poor responders

In vivo

intermediate/

good responders

Medians in μmol/mg (p25 - p75)

Essential

amino acids

Isoleucine 5.4 (3.6 - 7.3) 7.7 (6.3 - 8.6) 7.3 (5.0 - 11.5) 5.4 ( 4 - 7.1)

Leucine 4.9 (4.1 - 6.9) 4.5 (1.9 - 6.3) 8.7 (6.6 - 10.4) 4.1 (2.7 - 5.7)

Lysine 4.9 (3.4 - 7.3) 5.2 (3.8 - 6.1) 7.3 (5.8 - 8.9) 4.5 (3.2 - 6.1)

Phenylalanine 2.4 (1.7 - 4.7) 2.8 (2.0 - 3.4) 4.3 (3.9 - 4.8) 3.1 (2.7 - 4.2)

Methionine 1.5 (0.6 - 4.0) 1.8 (0.8 - 2.9) 4.1 3.0 (2.6 - 4.5)

Threonine 5.5 (4.3 - 7.4) 6.0 (4.8 - 8.3) 7.6 (2.3 - 9.4) 5.2 (3.3 - 6.4)

Tyrosine 2.6 (2.1 - 3.8) 0.9 4.9 3.0 (2.5 - 3.8)

Valine 3.3 (2.9 - 4.6) 4.4 (1.5 - 4.5) 6.45 (5.2 - 7.3) 3.5 (3.0 - 4.7)

Histidine 1.7 (1.0 - 3.0) 1.7 (1.2 - 3.1) 3.25 3.0 (2.3 - 3.3)

Arginine 10.9 (8.8 - 13.6) 10.4 (8.2 - 13.8) 13.1 (7.4 - 18.4) 9.3 (5.9 - 10.9)

Non-essential

amino acids

Alanine 9.6 (6.4 - 11.5 9.9 (7.0 - 14.5) 13.1 (7.8 - 15.6) 7.3 (5.8 - 11.3)

Asparagine 4.5 (4.1 - 7.5) 5.2 (4.1 - 8.7) 4.7 (4.3 - 9.9) 4.5 (3.8 - 6.0)

Aspartic acid 30.1 (28.4 - 33.0) 31.4 (23.4 - 43.9) 28.8 (26.6 - 31.4) 29.6 (20.2 - 36.7)

Glutamic acid 69.3 (53.2 - 81.1) 72.3 (59.3 - 95.1) 72.9 (54.5 - 84.4) 59.1 (41.3 - 73.0)

Glutamine 17.0 (7.5 - 25.0) 19.4 (8.6 - 28.0) 17.1 (11.0 - 28.0) 8.6 (6.3 - 17.8)

Cystathionine 25.0 (12.8 - 29.1) 25.0 (18.6 - 32.6) 24.3 (11.5 - 54.8) 16.3 (13.8 - 20.9)

Glycine 21.3 (12.3 - 27.8) 20.3 (16.1 - 26.1) 17.8 (7.5 - 21.4) 15.0 (10.3 - 22.1)

Proline 7.0 (5.3 - 14.0) 6.4 (5.3 - 10.8) 15.6 (7.5 - 22.5) 8.6 (6.6 - 11.8)

Serine 9.2 (6.0 - 12.6) 9.4 (6.8 - 14.9) 12.9 (9.5 - 16.1) 8.7 (5.5 - 10.7)

Taurine 25.0 (11.3 - 42.4) 17.5 (10.7 - 42.4) 20.5 (11.4 - 40.3) 18.8 (10.2 - 54.1)

Relationship between intracellular levels at diagnosis of 20 amino acids and in vitro sensitivity to L-Asparaginase or in vivo response to one dose of PEG-
Asparaginase. Data are given as medians with interquartile ranges.



Table 3.5 Coagulation parameters of 57 patients before the window with PEG-Asparaginase at day -5, before starting ALL-9 induction
therapy (day 0), and during 4 Paronal infusions

Day -5 Day 0 Day 29 Day 33 Day 36 Day 40 Day 43

Asparaginase PEG-ASP Paronal


Paronal


Paronal


Paronal


Dose 1000 IU/m2 6000 IU/m2 6000 IU/m2 6000 IU/m2 6000 IU/m2

Screening

APTT

30 - 42 sec

32 (27 - 37)

PT

11.7 - 16 sec

13.9 (12.4 - 15.6)

Thrombin time

22 - 26 sec

27 (25.0 - 30.5)

Procoagulants

Fibrinogen

1.6 - 4.3 g/L

2.7 (2.1 - 3.9) 1.73 (1.3 - 1.9) 1.7 (1.4 - 2.2) 1.5 (1.1 - 1.7) 1.3 (1.1 - 1.6) 1.5 (1.2 - 1.8) 1.9 (1.3 - 2.9)

F V 0.87 (0.64 - 1.19) 0.58 (0.46 - 0.76) 1.493 (1.20 - 1.84) 1.76 (1.23 - 1.94) 1.48 (1.26 - 1.76) 1.70 (1.07 - 2.06) 1.47 (1.04 - 1.93)

F II 0.69 (0.43 - 0.91) 0.62 (0.49 - 0.74) 1.193 (1.04 - 1.45) 1.07 (0.92 - 1.40) 1.10 (0.92 - 1.15) 1.03 (0.90 - 1.29) 1.06 (0.83 - 1.22)

F VII 0.66 (0.52 - 0.78) 0.79 (0.69 - 0.95) 1.09 (0.88 - 1.27) 1.42 (1.08 - 1.76) 1.40 (1.14 - 1.77) 1.39 (1.14 - 1.68) 1.29 (0.98 - 1.69)

F IX 1.17 (0.98 - 1.35) 0.423 (0.33 - 0.51) 1.863 (1.54 - 2.27) 0.963 (0.70 - 1.42) 1.02 (0.62 - 1.50) 0.76 (0.61 - 1.15) 0.99 (0.57 - 1.30)

F X 0.95 (0.70 - 1.26) 0.682 (0.53 - 0.75) 1.473 (1.16 - 1.79) 1.30 (0.98 - 1.57) 1.20 (0.95 - 1.33) 1.13 (0.84 - 1.35) 1.17 (0.74 - 1.30)

Anticoagulants

AT 0.75 (0.66 - 0.86) 0.542 (0.48 - 0.65) 1.373 (1.30 - 1.55) 0.922 (0.82 - 1.02) 0.86 (0.69 - 1.08) 0.75 (0.64 - 1.00) 0.87 (0.65 - 1.03)

Prot C 0.71 (0.55 - 0.87) 0.53 (0.45 - 0.64) 2.093 (1.51 - 2.43) 1.25 (1.06 - 1.55) 1.38 (0.95 - 1.67 1.27 (1.00 - 1.41 1.15 (0.97 - 1.61

Prot S 0.72 (0.60 - 0.87) 0.373 (0.33 - 0.54) 1.033 (0.87 - 1.17) 0.633 (0.46 - 0.75) 0.57 (0.42 - 0.71) 0.59 (0.42 - 0.71) 0.60 (0.50 - 0.77)

Thrombin generation

F1+2 pmol/L

69 - 229 pmol/L

576 (259 - 1067) 365 (211 - 588) 2011 (130 - 290) 230 (167 - 293) 267 (178 - 344) 427 (189 - 623) 243 (161 - 362)

TAT g/L

1.5 - 4.1 g/L

13 (7.9 - 48.2) 5.23 (3.5 - 9.1) 5.0 (4.0 - 10.6) 4.9 (3.3 - 7.2) 4.6 (3.5 - 6.4) 5.1 (3.6 - 15.7) 5.5 (3.8 - 7.0)

Fibrinolysis

Alpha-2-antipl 1.08 (1.02 - 1.20) 0.703 (0.62 - 0.86) 1.583 (1.42 - 1.64) 1.073 (0.94 - 1.13) 1.04 (0.83 - 1.19) 0.93 (0.73 - 1.19) 1.02 (0.81 - 1.47)

Plasminogen 1.01 (0.79 - 1.18) 0.563 (0.52 - 0.70) 1.223 (1.10 - 1.34) 0.763 (0.69 - 0.90) 0.74 (0.66 - 0.93) 0.75 (0.60 - 0.92) 0.79 (0.65 - 1.02)

PAP g/L

80 - 450 g/L

641 (456 - 913) 2553 (204 - 355) 292 (194 - 397) 1393 (106 - 182) 157 (100 - 192) 157 (122 - 228) 181 (128 - 269)

D-dimer

0.1 - 0.55 mg/L

0.42 (0.27 - 0.85) 0.35 (0.19 - 0.59) 0.113 (0.07 - 0.19) 0.09 (0.06 - 0.12) 0.11 (0.07 - 0.17) 0.10 (0.06 - 0.17) 0.12 (0.09 - 0.21)

Results of procoagulant and anticoagulant parameters, of parameters of thrombin generation and of fibrinolysis of 57 patients before the window with PEG-
Asparaginase (day –5), before starting ALL-9 induction therapy (day 0), and related to 4 Paronal infusions (days 29 - 43). Data represent percentages or as

indicated otherwise. Normal reference ranges are 80 - 130%, or as indicated in italic. Data are given as medians with interquartile ranges. Superscripts refer to p
values: 1 = P ≤ 0.05, 2 = P ≤ 0.01 and 3 = P ≤ 0.001 related to the previous measurement.
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Table 3.6 Univariate analyses not stratified for treatment arm

P-value Hazard ratio 95% CI

Age1 0.918 0.9 0.2 4.3

Sex 0.214 0.4 0.1 1.8

WBC2 0.022 6.1 1.3 28.7

Immunophenotype3 0.344 1.9 0.5 7.0

Genotype4 0.115 5.3 0.7 41.7

Clinical response to PEG-Asparaginase5 0.004 6.4 1.8 22.9

L-Asparaginase sensitivity (in vitro)6 0.014 3.7 1.3 10.7

Results of univariate Cox proportional hazards regression analyses not stratified for ALL-9
treatment arm (standard risk / high risk). Only WBC, clinical response to the PEG-Asparaginase
window therapy and in vitro sensitivity to L-Asparaginase are significantly related to outcome.
1 < or > 10 years
2 < or > 50 x 109/L
3 T versus precursor B-ALL
4 hyperdiploidy and TEL-AML1 compared to the others
5 good and intermediate clinical responders compared to poor responders to PEG-Asp
6 in vitro sensitive and intermediate sensitive compared to resistant to L-Asparaginase
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INTRODUCTION

L-Asparaginase (L-Asp) plays a well-established role in the treatment of children

with acute lymphoblastic leukemia (ALL). L-Asp is postulated to exert its antitumor

activity by hydrolyzing asparagine (Asn) to aspartic acid and ammonia, thereby

depleting the leukemic cells from Asn, leading to impaired protein synthesis and

leukemic cell death. L-Asp may also act by depleting glutamine. Different

preparations and ways of administering L-Asp result in different plasma activities.

The half-life of Erwinia-L-Asp is shorter than that of Escherichia coli L-Asp, which is

in turn shorter than that of the polyethylene glycol (PEG)-conjugated form of L-

Asp.1 PEG-Asp shows less immune response and a prolonged half-life of 5.7 days

compared to 1.3 days for native L-Asp. These variations are related to differences

in the extent of Asn depletion.2

Pharmacokinetics and pharmacodynamics of PEG-Asp are not well characterized

in the cerebrospinal fluid (CSF). The L-Asp activity in the CSF is less than 1% of

the corresponding plasma activity using native E. coli-L-Asp. Yet, L-Asp is believed

to play a role in the prevention of meningeal leukemia probably by depleting the

pool of Asn in the CSF. It is not known whether an incomplete depletion of Asn in

the CSF results in a suboptimal antileukemic effect. In Rhesus monkeys and in a

number of adult patients, Riccardi et al3 demonstrated that, after native E. coli L-

Asp, CSF-Asn levels were depleted to < 0.2 μM. Several groups showed that a

plasma E. coli-L-Asp activity > 100 IU/L leads to an Asn depletion of < 0.2 μM in

the plasma and CSF.2,4 Müller et al5 demonstrated that after one dose of 1000

IU/m2 PEG-Asp intravenously (i.v.) as second-line treatment, the plasma L-Asp

activity was still ≥ 100 IU/L after 14 days in 44/66 patients. Unfortunately, no CSF

levels were measured in their study.

Recently, Avramis et al6 showed that PEG-Asp (1 x 2500 IU/m2) intramuscularly

(i.m.) reached an L-Asp plasma activity > 100 IU/L accompanied by Asn levels < 3

μM during 3 - 14 days in 95% of the patients. CSF-Asn concentrations fell to 0.6

μM at day 28. In the present paper, we report on 24 newly diagnosed children with

ALL treated in our center with a single dose of PEG-Asp (Oncaspar™) 1000 IU/m2

i.v., 5 days before starting induction chemotherapy according to the ALL-9 study of

the Dutch Childhood Leukemia Study Group (DCLSG).

MATERIAL AND METHODS

The bone marrow, blood and CSF were obtained at diagnosis. From day -5 till

day 0, peripheral blood samples were collected daily, and later on twice a week. At

day 0, a second lumbar puncture (LP) was performed at the start of combination

induction therapy (dexamethasone, vincristine, and intrathecal triple therapy

during the first 4 weeks, daunorubicine only in case of initial high-risk criteria). A

third CSF sample was drawn at day 15.

The quantification of L-Asp activity was performed by incubating the samples

with an excess amount of L-aspartic acid β-hydroxamate (AHA) at 37 °C. L-Asp
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hydrolyzed AHA to L-aspartic acid and hydroxylamine, which was detected at 710

nm after condensation with 8-hydroxychinoline and oxidation to indooxine. This

method allowed the quantification of 2.5 IU/L L-Asp in human serum with

coefficients of variation for intra- and interday variability of 1.98 - 8.77% and 1.73

- 11.0%, and an overall recovery of 101 ± 9.92%.7 Asn levels in the plasma and

CSF were measured using the RP-HPLC technique following precolumn derivation

with o-phthaldialdehyde and fluorescence detection according to Lenda and

Svenneby.8 The lower limit of detection (LOD) was 0.2 μM.

RESULTS AND DISCUSSION

All patients reached an L-Asp activity ≥ 100 IU/L for at least 10 days (Figure 4.1).

A peak level of 744 ± 132 IU/L (mean ± SD) was reached 1 h after the PEG-Asp

infusion, declining to 483 ± 101 IU/L (mean ± SD) after 5 days and to 212 ± 66

IU/L (mean ± SD) on day 7, 12 days after the PEG-Asp administration; on day 15

of the treatment schedule, 20 days after the PEG-Asp infusion, L-Asp activity had

declined to 39 ± 28 IU/L (mean ± SD). Avramis showed that the mean peak of

PEG-Asp activity was 1000 IU/L when measured 5 days after a dose of 2500 IU/m2

i.m. was given to children with ALL, declining to about 100 IU/L on day 24.6

We also analyzed all CSF samples for L-Asp activity and detected no activity

above the limit of quantification (2.5 IU/L).

Figure 4.1 Plasma L-Asparaginase activity levels
Sequential analysis of plasma L-Asparaginase activity (IU/L) after 1000 IU/m2 of PEG-Asp i.v.
given 5 days before starting combined induction chemotherapy (CT).
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In all patients, plasma Asn levels declined below the LOD of 0.2 μM (Figure

4.2A). From the point of view of peripheral treatment intensity, the results of Asn

plasma concentrations after 1000 IU/m2 PEG-Asp indicate a treatment intensity

comparable to that observed with native unpegylated L-Asp (10,000 IU/m2).2

Riccardi et al3 showed that Asn depletion in CSF was only achieved after plasma

Asn depletion. However, no complete Asn depletion in the CSF occurred in our

patient group (Figure 4.2B): pretreatment starting levels at day -5 ranged from

3.5 to 7.2 μM (mean 5.1 ± 1.1 μM), decreasing to a mean concentration of 1.58 ±

0.66 μM at day 0 just before starting induction chemotherapy. At day 14 (19 days

after the administration of PEG-Asp), the mean CSF Asn concentration was 2.2 ±

0.67 μM. The Asn concentration never dropped below the LOD (0.2 μM). We also

spiked CSF samples with L-Asp, incubated the samples at 37 °C and analyzed

them for Asn by HPLC. No Asn was detected in the spiked samples; thus, we are

sure that we determined Asn in the CSF samples. CSF-Asn concentrations in the

study of Avramis fell from a median pretreatment level of 2.3 to 1.1 μM on day 7

and 0.6 μM on day 28,6 demonstrating that i.m. PEG-Asp also does not fully

deplete CSF Asn. These Asn levels are still high above the detection limit of 0.01

μM in their study. The study of Avramis differs from our study in terms of the dose

of PEG-Asp (2500 vs 1000 IU/m2), the route of PEG-Asp (i.m. vs i.v.), and

concomitant chemotherapy (prednisone p.o., vincristine i.v., and intrathecal

cytarabine/methotrexate vs none in the first 5 days). The influence of concomitant

antileukemic treatment on the pharmacokinetic and pharmacodynamic effects of L-

Asp is not clear.

It has been suggested that the CSF-Asp activity never exceeds 0.2% of the L-

Asp activity in plasma.3 One explanation for the lack of Asn depletion in CSF may

be that the pegylated form of L-Asp results in CSF-Asp levels that are even less

than 0.2% of the plasma activity. We also analyzed all CSF samples for PEG-Asp

activity and detected no activity above the limit of quantification (2.5 IU/L).

Another explanation could be that the central nervous system is capable of

synthesizing Asn locally despite the depletion of the systemic Asn pool. To

maintain sufficient amino acids in the CSF, a net amino-acid entry from blood to

CSF against a concentration gradient has been demonstrated in sheep.9

So, despite the fact that a dose of 1000 IU/m2 PEG-Asp results in plasma Asn

levels < 0.2 μM, the human body is still capable of maintaining the CSF Asn levels.

Although PEG-Asp may have the advantage of fewer injections, this might be

counterbalanced by less effective killing of blasts in the CSF. It is yet unknown

whether an impaired depletion of Asn in CSF by PEG-Asp has an effect on the

incidence of CNS relapse in this group of patients.
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Figure 4.2 Asparagine levels in time

(A) Sequential analysis of plasma (■) asparagine levels (μM) after 1000 IU/m2 of PEG-Asp i.v.

given 5 days before starting combined induction chemotherapy (CT).

(B) Sequential analysis of CSF (□) asparagine levels (μM) after 1000 IU/m2 of PEG-Asp i.v. given

5 days before starting combined induction chemotherapy (CT). The dotted line depicts the

results of Avramis after 2.500 IU/m2 PEG-Asp given i.m. and combined with induction

chemotherapy during the first 5 days.
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ABSTRACT

Alterations in hemostasis have frequently been

observed in children with acute lymphoblastic

leukemia. Thrombotic events are well documented

in patients receiving L-Asparaginase as a single

agent or in combination with other

chemotherapeutic drugs. The present prospective,

randomized study evaluated the effect of two

different L-Asparaginase preparations, native

Escherichia coli L-Asparaginase (Crasnitin; Bayer

AG, Leverkusen, Germany; n = 10) and L-

Asparaginase derived from Erwinia chrysanthemi

(Erwinase®; Porton Pruducts, London, UK; n = 10)

on the changes in parameters concerning

hypercoagulability. Patients were randomized to

receive a total of eight doses of 10 000 IU/m2 L-

Asparaginase intravenously with intervals of 3 days

during induction therapy. Before starting L-

Asparaginase treatment all patients had already

demonstrated an increased thrombin generation

shown by the elevated levels of prothrombin F1+2

and thrombin antithrombin complex (TAT),

presumably due to therapy with prednisone,

daunorubicin and vincristine. A significant decrease

in alpha2-antiplasmin and plasminogen levels was

measured in the E. coli L-Asparaginase but not in

Erwinase-treated patients. Increased thrombin

generation combined with a decrease in α2-

antiplasmin and plasminogen levels may lead to a

state of increased risk for thrombosis due to a delay

in fibrin elimination in E. coli L-Asparaginase-

treated patients only.
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INTRODUCTION

L-Asparaginase has proven to be an important element in the treatment of

childhood acute lymphoblastic leukemia (ALL). As a side effect, L-Asparaginase can

diminish synthesis of several coagulation factors and inhibitors1 that can lead to an

increased risk for thrombosis.2-4 This suggests that the balance between

coagulation and fibrinolysis is shifted towards fibrin formation and deposition.

The changes observed in coagulation parameters in patients treated with L-

Asparaginase have not, however, been consistent in different series of patients,5-7

which can be related to differences in age, genetic predisposition for

hypercoagulability, co-administration of other chemotherapy and the product of L-

Asparaginase used. Due to a shorter half life the same dosage of Erwinase®

(Porton Pruducts, London, UK) shows less antileukemic activity than various kinds

of Escherichia coli L-Asparaginase.8,9 It is suggested that different E. coli L-

Asparaginase preparations influence fibrinolytic proteins in a different way.10 In a

previous study we saw that decreased coagulation factor synthesis in particular

antithrombin was in part counterbalanced by the effect of prednisone.11,12 The

imbalance in coagulation factors was less pronounced in children treated with

Erwinase® than in children treated with E. coli L-Asparaginase. The European

Organization for Research and Treatment of Cancer Children's Leukemia Group

(EORTC-CLG) randomized 700 children with ALL for E. coli L-Asparaginase or

Erwinase®. Abnormalities in hemostasis, not further specified, were more frequent

in the E. coli L-Asparaginase than in the Erwinia arm of the study (30.2% versus

11.9%, P < 0.0001).7

Several highly sensitive and specific tests for activation of the hemostatic

system are available (Figure 5.1). Measurement of the activation peptide

prothrombin fragment 1+2 (F1+2) provides information on the cleavage of the

prothrombin molecule by activated factor X. The protease inhibitor complex

thrombin antithrombin (TAT) reflects the in vivo thrombin generation process.

Activation of the fibrinolytic system leads to plasmin formation, which lyses cross-

linked fibrin to fibrin degradation products. This will generate increased levels of

plasma D-dimer. The plasmin-α2-antiplasmin (PAP) complex level will be raised in

case of increased fibrinolytic activity due to binding of the active proteolytic

enzyme plasmin by α2-antiplasmin (α2-AP).

In order to study the effects of different kinds of L-Asparaginases, we first

analyzed the data of a randomized study comparing E. coli L-Asparaginase

(Crasnitin®; Bayer, Leverkusen, Germany) and L-Asparaginase derived from

Erwinia chrysanthemi (Erwinase®) in childhood ALL. We studied the effects of L-

Asparaginase on thrombin generation measuring F1+2 and TAT and on fibrin

degradation by measuring α2-AP, plasminogen and PAP, D-dimers and fibrinogen.
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Figure 5.1 Diagram on thrombin generation and fibrinolysis
Diagram showing the biochemical steps in the generation of stable inactive enzyme-inhibitor
complexes. Prothrombin fragment 1+2 (F1+2) is generated by the cleavage of prothrombin by
activated FX. Thrombin antithrombin complexes (TAT) reflect the thrombin generation process.
Lysis of fibrin will generate fibrin degradation products (FbDp) which in turn increase the levels
of D-dimer. The binding of plasmin by alpha-2-antiplasmin leads to the formation of the plasmin-
alpha-2-antiplasmin complex (PAP).

METHODS

Patients

Twenty children, consecutively admitted to our hospital with newly diagnosed ALL

between June 1989 and December 1990, were entered in the study. There were 10

boys and 10 girls, varying in age from 10 months to 12.3 years (mean 6.1 years).

The characteristics of the 20 patients are given in Table 5.1. The groups did not

differ significantly with respect to the given characteristics. The induction

treatment was according to the ALL-7 protocol of the Dutch Childhood Oncology

Group, formerly the Dutch Childhood Leukemia Study Group,13 which is based

upon the Berlin-Frankfurt-Munster (BFM) 86 protocol14 (Figure 5.2). After written

informed consent the patients were randomized on day 18 for E. coli L-

Asparaginase or Erwinase® administered every 3 days starting at day 19 as 10 000

IU/m2 in a 1-h infusion given at 1400-h each time. A total of eight doses were

given during induction. No transfusions with fresh frozen plasma or antithrombin

concentrate were administered to the children. The local ethical committee

approved the study.
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Table 5.1 Characteristics of 20 patients at diagnosis

Escherichia coli

L-Asparaginase-treated

children n =10

Erwinia

L-Asparaginase-treated

children n =10

Male/female 5/5 5/5

age (years) 5.5 (2.5 - 9.4) 5.1 (0.8 - 12.6)

Hb (mmol/l) 5.4 (4.3 - 7.5) 4.3 (2.6 - 9.1)

WBC (109/l) 10.8 (4.3 - 38.7) 62.8 (4.6 - 585)

Thr (109/l) 81 (16 - 310) 37 (< 10 - 141)

Immunological phenotyping

Null ALL 0 1

Common ALL 7 5

Pre B ALL 2 0

T ALL 1 4

Data given are number of patients or median (range). Ten patients treated with E. coli L-
Asparaginase and 10 treated with Erwinia L-Asparaginase. The immunological phenotyping is
included. Hb, hemoglobin; WBC, white blood count; Thr, trombocytes; ALL, acute lymphoblastic
leukemia.

Samples

A circadian variation of the fibrinolytic activity in blood has only been

demonstrated for tissue-type plasminogen activator (tPA) and plasminogen

activator inhibitor (PAI).15 Other coagulation parameters vary little or not at all

during the day. In order to eliminate any influence of circadian variation, we

planned all measurements at 1400-h. Blood samples were collected before each L-

Asparaginase administration at 1400-h from the infusion line (Venisystems

Butterfly 21 gauge; Abbott, Ireland). The venous blood samples were collected in

cups containing 3.8% trisodium citrate. The samples were chilled immediately in

an ice bath, centrifuged at 20.000 rpm for 30 min at + 4 °C. The supernatant was

withdrawn and stored at -80 °C until the time of analysis.

Figure 5.2 DCOG-ALL-7 induction therapy
First part of the induction therapy for acute lymphoblastic leukemia according to the DCOG-
ALL-7 study. Methotrexate intrathecal was admitted according (acc.) to age.
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Coagulation assays

The values of activation markers like F1+2, TAT, PAP and D-dimer are similar in

children and adults, as was demonstrated by Ries et al.16 So we were able to adapt

the reference values for adults as provided by the manufacturers.

F1+2 was measured using a commercial solid phase enzyme-linked

immunosorbent-assay (Enzygnost F1+2; Dade Behring GmbH, Marburg, Germany)

following the manufacturer's instructions.17 We adopted the reference values (5th

to 95th percentile) provided by Dade Behring, 0.44 - 1.11 nmol/l.

TAT was determined with a commercial solid phase enzyme-linked

immunosorbent assay (Enzygnost TAT, Behringwerke AG, Marburg, Germany)

following the manufacturer's instructions.18 We constructed our own pediatric

reference values on 62 healthy children between 1 and 15 years old; reference

values for TAT plasma levels were median 2.7 µg/l (5th to 95th percentile 1.1 - 4.3

µg/l). These reference values were in line with the values as determined by Ries et

al.16

Alpha2-antiplasmin (α2-AP) was determined in a kinetic test.19 The normal

reference interval lies between 80 and 120% (Dade Behring GmbH).

Plasminogen was also determined in a kinetic test.20 The normal reference

interval lies between 75 and 140% (Dade Behring GmbH).

PAP was measured by a sandwich enzyme immunoassay of Dade Behring GmbH

following the manufacturer's instructions.21 The normal reference range (percentile

2.5 - 97.5) of this enzyme immunoassay lies between 120 and 700 µg/l (Dade

Behring GmbH) as determined in 466 healthy adults. There are no differences in

normal values between children and adults.16

D-Dimer levels were measured using a commercial enzyme-linked

immunoassay (Asserachrom D-Di; Diagnostica Stago, Asnières, France) following

manufacturer's instructions.22,23 The lower limit of sensitivity was 500 ng/ml, levels

above the 500 ng/ml point to an increased breakdown of fibrin monomers.

Fibrinogen was examined according to the Clauss method.24 Normal values

range between 2 and 4 g/l.

Determinations of PAP and D-dimer were only done at day 19, before the first

L-Asparaginase administration, at day 25 after two L-Asparaginase administrations

and at day 34, after five infusions of L-Asparaginase.

Statistics

Repeated measurements analysis of variance (SAS PROC MIXED; SAS Institute,

Cary, North Carolina, USA) was used to evaluate the differences between and

within both experimental groups. This method was used after logarithmic

transformation of TAT, F1+2 and D-dimer to obtain approximate normal

distributions. P = 0.05 (two sided) was considered the limit of significance. The

Mann Whitney U test was used to calculate differences in the various parameters

at day 19 between the two groups of patients.
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RESULTS

Groups were comparable regarding various baseline coagulation/fibrinolytic

parameters on day 19 at the start of L-Asparaginase treatment.

Prothrombin fragment 1+2

To obtain approximate normal distributions these data were analyzed after

logarithmic transformation. All patients demonstrated high levels of F1+2 before

the start of L-Asparaginase therapy (Figure 5.3). During and after administration

of L-Asparaginase, no significant differences of F1+2 in time evolved in comparison

with the values before starting L-Asparaginase on day 19. Also within each of the

two groups analyzed separately no differences at the various time points compared

with day 19 were found (P > 0.1). Adjusted for baseline values at day 19, the

mean value of F1+2 at the various time points was 0.08 nmol/l lower in the E. coli

L-Asparaginase-treated patients than in the Erwinase®-treated children, but this

did not reach statistical significance (P = 0.1). The mean values of F1+2 varied

between 1.3 (SEM 0.1) and 2.3 nmol/l (SEM 0.8) in the E. coli L-Asparaginase-

treated group and between 1.5 (SEM 0.1) and 2.9 nmol/l (SEM 1.1) in the

Erwinase®-treated children at the different time points (Figure 5.3).

Thrombin antithrombin

To obtain approximate normal distributions these data were analyzed after

logarithmic transformation. High levels of TAT were already found in all 20 patients

before starting L-Asparaginase (Figure 5.3). Within each of the two groups no

significant changes of TAT occurred during treatment (P > 0.1). The TAT levels at

the various time points did not significantly differ between the E. coli L-

Asparaginase-treated patients and the Erwinase®-treated children. The mean

values of TAT ranged between 6.6 (SEM 1.5) and 27 (SEM 19.3) µg/l in the E. coli

L-Asparaginase-treated children and between 7.3 (SEM 1.4) and 55.4 (SEM 36)

µg/l in the Erwinase®-treated group (Figure 5.3).

Figure 5.3 Parameters of trombin generation
Geometric means ± Standard error over time of prothrombin fragment 1+2 (F1+2) in mmol/L
and thrombin-antithrombin complexes (TAT) in μg/L for 10 patients treated with Escherichia coli
L-Asparaginase and 10 patients treated with Erwinase® monitored from the first infusion with L-
Asparaginase 10.000 IU/m2 intravenously until the last infusion. Range of normal values of
F1+2: 0.44 - 1.11 mmol/L, range of normal values of TAT: 1.1 - 4.3 µg/L.
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Alpha2-antiplasmin

The mean α2-AP values in the E. coli L-Asparaginase-treated patients declined from

110% (SEM 3.6) before starting L-Asparaginase to 88% (SEM 4.6) at day 25,

before starting the third L-Asparaginase infusion, and thereafter values stayed

stable (Figure 5.4). Using RmANOVA, adjusted for baseline values at day 19, the

mean values of α2-AP at the various time points were 18.2 units lower in the

children treated with E. coli L-Asparaginase (P < 0.001) than in the children

treated with Erwinase®. In the Erwinase®-treated patients the mean α2-AP values

did not differ from baseline values at day 19 but stayed within the normal range

with mean values ranging from 97% (SEM 3.4) to 106% (SEM 4.2) (Figure 5.4).

Plasminogen

In the E. coli L-Asparaginase group plasminogen levels started at a mean of 102%

(SEM 6) and decreased to 72% (SEM 6) before the third L-Asparaginase

administration and thereafter mean values remained stable between 74 and 79%

(Figure 5.4). In the Erwinase®-treated patients the mean plasminogen value

before starting L-Asparaginase therapy was 89% and mean values stayed between

84% (SEM 5.9) and 89% (SEM 5.5) (Figure 5.4). Adjusted for baseline values at

day 19, the mean value of plasminogen at the various time points was 17.5 units

lower in the E. coli L-Asparaginase-treated children (P = 0.013) than in the

children treated with Erwinase®.

Plasmin-alpha2-antiplasmin

In the E. coli L-Asparaginase group the mean PAP values at day 19, 25 and 34

were respectively 233 (SEM 25.7), 145 (SEM 35) and 178 (SEM 33) µg/l. The

corresponding values for the Erwinase®-treated children were, respectively, 298

(SEM 72), 289 (SEM 53) and 287 (SEM 46) µg/l as demonstrated in Figure 5.4.

Using RmANOVA it was found that the mean value of PAP at the various time

points adjusted for baseline values at day 19 was 120 µg/l lower in the E. coli L-

Asparaginase group (P = 0.04) than in the Erwinase® group.

D-Dimer

To obtain approximate normal distributions these data were analyzed after

logarithmic transformation. In the E. coli L-Asparaginase group the mean D-dimer

values at day 19, 25 and 34 were, respectively, 162 (SEM 14.5), 152 (SEM 43)

and 214 (SEM 100) ng/ml (Figure 5.4). The corresponding values for the

Erwinase®-treated children were, respectively, 238 (SEM 58), 202 (SEM 41) and

264 (SEM 71) ng/ml. All individual values were within the normal range pointing to

no degradation of fibrin to fibrin monomers. No active fibrinolysis was monitored.

Adjusted for baseline values at day 19 the mean value of D-dimer at the various

time points did not significantly differ between the E. coli L-Asparaginase-treated

children and the Erwinase®-treated patients (P = 0.4).
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Fibrinogen
Mean values at day 19 started in the E. coli L-Asparaginase-treated group at 1.4

g/l (SEM 0.2) with a nadir of 0.9 g/l (SEM 0.1) at day 25 to gradually increasing

values of 1.5 g/l (SEM 0.16) at day 40. In the Erwinase®-treated children

fibrinogen levels start at day 19 at 1.0 g/l (SEM 0.1), gradually increasing to 2.3

g/l (SEM 0.2) at day 40.

During the study in none of the 20 patients did any clinical signs of serious

bleeding or thrombotic events occur.

Figure 5.4 Parameters of fibrinolysis
Means ± SEM over time of (A) α2-antiplasmin (%) and (B) of plasminogen (%) for 10 patients
treated with E. coli L-Asparaginase and 10 patients treated with Erwinase® monitored from the
first infusion with L-Asparaginase 10.000 IU/m2 intravenously until the last infusion. Adjusted for
baseline values at day 19, the mean values of α2-antiplasmin are significantly lower in the E. coli
L-Asparaginase-treated children (P = 0.001) compared with the Erwinia-treated children. The
mean values of plasminogen are significantly lower in the E. coli L-Asparaginase- treated
children (P = 0.013) than in the Erwinase®-treated children. Range of normal values of α2-
antiplasmin: 80 - 120%; range of normal values of plasminogen: 75 - 140%.
(C) Means ± SEM in time of plasminogen-α2-antiplasmin (PAP) in μg/l monitored from the first
infusion, the third and the last infusion with L-Asparaginase 10.000 IU/m2 intravenously. A
significant decrease in PAP is found in E. coli L-Asparaginase-treated children between day 19
and day 25 (P = 0.03). Range of normal values: 120 - 700 μg/L.
(D) Geometric means ± SEM in time of D-Dimer in ng/ml monitored from the first infusion, the
third and the last infusion with L-Asparaginase 10.000 IU/m2 intravenously. Normal values <
500 ng/ml.

A

DC

B
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DISCUSSION

Children suffering from ALL are at risk for increased bleeding tendencies as well as

for thrombotic events. Activation of the coagulation system can be attributed to

the malignant disease.4 Additionally, chemotherapeutic regimens contain several

antileukemic drugs that can influence the balance between bleeding and

thrombosis. The most important drugs that influence the coagulation system are

prednisone and L-Asparaginase.

In a former study we demonstrated that the largest changes in coagulation

proteins were monitored in the first part of ALL induction treatment consisting of

intravenous vincristine, prednisone, daunorubicin and intrathecal methotrexate.

During the second phase of induction treatment when L-Asparaginase was added,

only minor additional changes in plasma coagulation factors were found.11,12 A

remarkable shortening of the APTT most likely due to a rise in factor VIII and IX,

together with a progressive hypofibrinogenemia and a significant rise in both the

AT and protein C activities, were responsible for an unstable balance between

coagulation and bleeding factors before L-Asparaginase was added to the

treatment. All these changes could probably be attributed to the use of

prednisone.25,26 We did not find an additional effect of L-Asparaginase on the

coagulation proteins that are involved in fibrin formation.11

The changes observed in coagulation proteins are related to the product and

the dose of L-Asparaginase used.5,6,27,28 We now know that different L-

Asparaginase preparations manifest different pharmacokinetic and

pharmacodynamic properties. The influence on fibrinolytic proteins will be

different.10 In the present randomized prospective study we analyze the process of

thrombin generation and fibrinolysis by two different L-Asparaginase preparations.

All patients demonstrate increased thrombin generation already before starting L-

Asparaginase, pointing to a state of hypercoagulability demonstrated by elevated

levels of F1+2 as well as TAT (Figure 5.3). The administration of L-Asparaginase,

either generated from native E. coli or from Erwinia chrysanthemi, does not lead to

a further increase or any decrease in the levels of TAT and F1+2. As prednisone

therapy continues during the second part of ALL induction treatment the raised

levels of F1+2 and TAT might be attributed to the concomitant use of

corticosteroids.25 Considering that the half-lives of F1+2 and TAT are respectively

90 and 3 minutes and that both parameters were taken at the same time for each

investigation, we conclude that thrombin generation is not clearly influenced by

the administration of L-Asparaginase in the way it was given in this study. The

collection of blood samples from metal butterfly needles is comparable with a

direct venipuncture and not to the situation with peripheral catheters in situ.29

Therefore a reliable interpretation of F1+2 and TAT complexes is possible, pointing

to a state of hypercoagulability in all patients, presumably due to the concomitant

use of prednisone.

The statistically significant decline in both α2-AP and plasminogen in the E. coli

L-Asparaginase-treated children in relation to the parallel reduction in PAP levels

points in this study to a decrease in synthesis of α2-AP and plasminogen,
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respectively. This decline does not occur in the Erwinase®-treated children (Figure

5.4). The presumed effect of prednisone on α2-AP and plasminogen levels is

negligible, as is demonstrated by the normal values of both proteins before

starting L-Asparaginase. Patients on long-term steroid therapy demonstrate a

hypercoagulable and hypofibrinolytic state due to elevations of several coagulation

factors and due to elevations of PAI-1.30 This hypofibrinolytic state will possibly be

induced by prednisone in the same way in all our patients. So, from this

randomized study, we can conclude that the decrease in PAP levels, due to a

decrease in α2-AP and plasminogen synthesis, will cause a delay in fibrin

elimination and therefore might lead to a hypercoagulable state in the E. coli L-

Asparaginase-treated patients only and not in the Erwinase®-treated children.

The D-dimer levels stayed within the normal range during L-Asparaginase

treatment. Statistical analysis reveals no difference on the various time points

between E. coli L-Asparaginase and Erwinase®-treated children (Figure 5.4). The

normal values of D-dimer even at baseline can be explained by

hypofibrinogenemia in all 20 patients induced by initial prednisone therapy. This

implies that active fibrinolysis after the introduction of L-Asparaginase potentially

leading to fibrin degradation is not observed irrespective of the differences in

pharmacokinetics between these two L-Asparaginases.

The present study shows different effects of different kinds of L-Asparaginase

on the coagulation system.8 The two L-Asparaginase preparations differ in half-life

with different influences on the amino acid metabolism. A dose-dependent

influence of L-Asparaginase preparations on protein synthesis has also been found.

The half life of native E. coli L-Asparaginase is 1.24 days whereas the half life of

Erwinase® is 0.65 days.8,31 The effects measured in our study are the result of

10,000 IU/m2 of L-Asparaginase administered every 3 days. In the Gruppo Italiano

Malattie Ematologiche dell'Adulto (GIMEMA) study32 E. coli L-Asparaginase was

given daily in a lower dose of 6000 IU/m2 and also at this dose an increase in

hypercoagulability parameters during treatment with E. coli L-Asparaginase was

found. Nowak-Gottl33 demonstrated less changes in hemostasis in children treated

with 2500 IU/m2 of the native E. coli L-Asparaginase preparation compared with

5000 IU/m2 of the same L-Asparaginase. In another non-randomized study they

showed that the downregulation of coagulation proteins like fibrinogen,

plasminogen and α2-AP was more pronounced in children treated with Medac L-

Asparaginase (Medac Therapeutics, Wedel, Germany) than in children treated with

the original native product of Bayer (Crasnitin®) or Erwinase®.10 In their report a

significant enhanced thrombin generation also with increased levels of D-dimers

was found. So, different effects on the coagulation system are not only found

between L-Asparaginase generated from E. coli or from Erwinia chrysanthemi, but

also among different commercial E. coli preparations.

We conclude that the leukemia itself together with initial treatment with

prednisone during ALL induction leads to a situation of increased thrombin

generation as is demonstrated by increased F1+2 and TAT levels. Addition of L-

Asparaginase to the induction therapy leads to a decreased fibrinolytic potential

due to decreasing levels of α2-AP and plasminogen in children treated with E. coli
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L-Asparaginase but not in children treated with Erwinase®. Therefore, the use of

prednisone in combination with E. coli L-Asparaginase (Crasnitin®, Bayer) leads to

an increased risk for thrombosis in children with ALL. Ongoing studies have to

clarify how new formulations like pegylated L-Asparaginase and recombinant L-

Asparaginase influence the coagulation system, and such studies have to be

combined with pharmacokinetic and pharmacodynamic data.
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ABSTRACT

Alterations in hemostasis are frequently observed in

children with acute lymphoblastic leukemia (ALL).

In the present study we analyzed age-related

disturbances in coagulation and fibrinolysis

parameters during the induction phase of the DCOG-

ALL-9 protocol. 64 children were classified by age

into three groups (1 - 5, 6 - 10, 11 - 16 years), and

studied during induction treatment of ALL including 4

weeks of dexamethasone, followed by 2 weeks

tapering of dexamethasone during which 6,000

IU/m2 Paronal® (total 4 doses) was administered

intravenously twice weekly. Blood samples were

collected immediately before each Paronal® infusion

to analyze procoagulant (fibrinogen, F II, F V, F VII,

F IX, F X) and anticoagulant factors (AT, protein C,

protein S), parameters of thrombin generation

(F1+2, TAT) and fibrinolysis (α2-antiplasmin,

plasminogen, PAP, D-dimer).

Children were in a hypercoagulable state after 4

weeks of dexamethasone due to upregulation of

coagulation parameters. Upregulation was highest in

the two youngest age groups. During Paronal®

treatment the 11 - 16 year olds showed lower values

in procoagulant and, even more, in anticoagulant

factor levels compared to the younger children.

Activation markers of thrombin generation and

fibrinolysis did not change over time during the

study period. The fibrinolytic potential was

significantly more disturbed in children older than 11

years as a result of decreasing levels of

α2-antiplasmin and plasminogen during Paronal®

treatment.

A more severe decline of anticoagulant and

fibrinolytic parameters in children between 11 and

16 years of age underline that these children are at

higher risk of thrombosis during ALL induction

treatment.
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INTRODUCTION

Alterations in hemostasis are frequently observed in children with acute

lymphoblastic leukemia (ALL). Although the process of increased thrombin

generation is already active at diagnosis,1 thrombo-embolism, does not occur until

anti-leukemic therapy is started, typically during the induction phase of therapy.

The pathogenesis of this increased thrombotic risk is not fully understood. It

includes a combination of variables related to the disease itself, its treatment and

the host. As most drugs are given as combination chemotherapy, assessing how

single agents affect the coagulation system is quite difficult.

L-Asparaginase and steroids have been studied most extensively in this

respect. L-Asparaginase is an enzyme that converts the non-essential amino acid

asparagine into aspartic acid and ammonia. The resulting inhibition in protein

synthesis explains both for its antileukemic effect and its toxicity on the

coagulation system. Different kinds of L-Asparaginase have different half-lives and

different peak activities.2,3 The extents of asparagine depletion, antileukemic effect

and disturbance of the coagulation system are dependent on doses and type of

L-Asparaginase preparation used.

Different investigators have shown that prednisone therapy is associated with

higher F VIII, von Willebrand factor, F II and antithrombin (AT), and with lower

fibrinogen levels.1,4 Two trials in children with ALL5,6 – randomizing dexamethasone

versus prednisone – demonstrated no apparent differences in incidences of

clinically overt thrombotic events.

In an earlier randomized study7 we reported on the differences in

hypercoagulability between two L-Asparaginase preparations: Crasnitin® (Bayer)

and Erwinase® (Ipsen). Treatment with the E. coli L-Asparaginase Crasnitin® caused

a delay in fibrin elimination and thus increased the risk of thrombosis, unlike

Erwinase® treatment.

Andrew et al. as early as the late 1980's introduced the concept of

developmental hemostasis,8 which recently was confirmed by Monagle et al.9 From

age-related changes in the coagulation system this concept proposes that

hemostasis in childhood is age-dependent, i.e. the youngest children are the best

protected from thrombosis. In confirmation of this concept, Barry et al. and

Moghrabi et al. pointed to an effect of age on the risk for symptomatic thrombo-

embolic disease during Dana-Farber Cancer Institute ALL treatment protocols.10,11

Patients aged 10 -18 years were more likely to experience L-Asparaginase related

toxicity than were younger children (thrombotic events 11% versus 2%), even

when stratified by risk group. Reports on changes in the coagulation system

related to L-Asparaginase treatment in children of different age groups are lacking

so far.

The current report analyses the effect of age on disturbances in coagulation and

fibrinolysis in children with newly diagnosed ALL.
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METHODS

Patients and therapy

Subjects eligible for this study were all children with newly diagnosed ALL

consecutively admitted to our hospital between April 1997 and October 2000. The

family history was checked for thrombophilia. Still, a possible familiar

thrombophilic risk factor was not an exclusion criterion. Routine screening for

thrombophilia was not done. None of the subjects had a history of bleeding or

thrombotic disorders. Prior to instituting therapy informed consent was obtained

from parents or guardians in accordance with the Declaration of Helsinki.

Therapy was according to the ALL-9 protocol of the Dutch Childhood Oncology

Group based on the earlier ALL-6 treatment strategy.12 Non-high risk ALL was

defined as WBC < 50 x 109/L, no mediastinal mass, no t(9;22), no t(4;11) or MLL

rearrangement, no T-cell phenotype and no central nervous system or testicular

involvement. All other leukemias were defined as high risk. The induction phase for

all patients is depicted in Figure 6.1. Four doses of Paronal® (6,000 IU/m2, E. coli

L-Asparaginase from Medac GmBH Germany) were administered intravenously in

one-hour infusions twice a week.

All children had a central venous device. Minor allergic reactions (grade I or II)

were counteracted by lowering the infusion rate. Consequently, before starting the

next Paronal® infusion, these patients were given an antihistaminic drug, e.g.

clemastine, and eventually steroids.

Sampling

During induction on days 29, 33, 36 and 40, blood samples were collected from

the venous device immediately before each Paronal® infusion and on day 43. Blood

samples were collected in tubes containing 3.8% trisodium citrate, chilled

immediately in an ice bath and centrifuged at 20,000 rpm for 30 minutes at +4 ºC.

The supernatant was withdrawn and stored at -80 ºC until the time of analysis.

Figure 6.1 Induction therapy according to the DCOG-ALL-9 study
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Coagulation assays

All coagulation assays were done with commercially available reagents and

methods, as described previously.7 All assays were performed on the Sysmex CA

1500 from Dade Behring (Germany). Reagents were supplied by Stago (France) or

Dade Behring (Marburg, Germany).

Procoagulants

Factors II, V, VII, IX and X were measured in a one-stage assay using

commercially available deficient plasma (Dade Behring, Marburg, Germany).

Anticoagulants

Antithrombin (AT) and protein C activities were measured functionally by a

chromogenic assay (Dade Behring), protein C antigen by an enzyme-linked

immunoadsorbent assay (Asserachrom, Stago, France). Total and free protein S

levels were measured by quantitative ELISA (Asserachrom, Stago).

Thrombin generation

The fibrinogen concentration was measured according to the "Clauss" method;13

normal reference ranges 2 - 4 g/L. The activation markers F1+2 and TAT were

measured using commercially available ELISA techniques (Dade Behring). We

adopted the reference values (5th - 95th percentile) for F1+2 provided by Dade

Behring: 0.44 - 1.11 nmol/l. We constructed our own pediatric reference values for

TAT on 62 healthy children between 1 and 15 years old: median 2.7 μg/l (5th - 95th

percentile: 1.1 - 4.3 μg/l).

Fibrinolysis

Alpha-2-antiplasmin (α2-AP) and plasminogen were determined in a kinetic test

(Dade Behring). For the activation marker PAP, a commercially available ELISA

technique was used (Dade Behring). The normal reference range (2.5th - 97.5th

percentile) is 120 - 700 g/l (Dade Behring) as determined in 466 healthy adults.

There are no differences in normal values between children and adults.14

D-dimer levels were measured using an enzyme-linked immunoassay (Biopool,

Ireland). The lower limit of sensitivity was 0.5 mg/ml, levels > 0.5 mg/ml point to

an increased breakdown of fibrin monomers.

Normal values

In this manuscript we compared our data with reference values of Monagle et al.9

except for protein S. We only measured antigen levels because of the interference

of protein S activity levels with high factor VIII levels or hyperbilirubinemia. Stago

data reported by Monagle and colleagues are compared with our Dade data.

Statistics

In concordance with previous studies, our results are reported for children aged 1

to 5 years, 6 to 10 years, and 11 to 16 years. Only for protein S values for boys

and girls separately were calculated.15,16
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The results are expressed as means and ranges (= minimum-maximum) so as

to enable comparison with the data of Monagle et al. TAT, F1+2, PAP and D-dimer

were transformed logarithmically in order to approximate normal distributions; for

these variables data are given as medians (minimum-maximum). Repeated

Measurements Analysis of Variance (SAS PROC MIXED) was used to evaluate

differences between and within the different age groups. Interaction terms for age

groups and time were used to evaluate whether the profiles of mean values over

time (measurement days) of the 3 age groups deviated from parallelism. In case of

significant time effects, comparisons were made with the first measurements on day

29. P = 0.05 (two-sided) was considered the limit of significance.

Data performed with Dade reagents are also evaluated with the outcomes of the

various parameters expressed as the percentage of the predicted mean value,

taking account of age and gender, if such reference values were available from

Monagle et al.

RESULTS

Clinical data

After informed consent, 72 children consecutively admitted to our hospital with

newly diagnosed ALL were enrolled in the study. Due to incomplete coagulation

data, however, eight children were excluded from analysis. Characteristics of the

remaining 64 children are shown in Table 6.1. All 64 completed the remission-

induction phase. No septic periods occurred during the period analyzed. None of

the children was treated with antithrombin concentrate or fresh frozen plasma.

One child, a nine-year-old boy, experienced a clinical thrombotic event. After a

short period of severe headache he suddenly demonstrated a left sided

hemiparesis one week after the last dose of Paronal®. An MR angiography showed

a cerebral sinovenous thrombosis. At the time, AT was 65%, protein C activity

71%, protein C antigen 58%, protein S free 51% and total protein S 79%. He

recovered completely.

Clinical complications such as pancreatitis, diabetes mellitus or hyperlipidemia

were not observed. One child experienced an allergic reaction grade II to the

fourth Paronal® infusion but after anti-allergic treatment the total dose could be

administered.

Coagulation data

Tables 6.2 - 6.5 provide the results over time from before each Paronal® infusion

on day 29, 33, 36, and 40 and from day 43 for the group as a whole and for the

three different age groups. Except for 2 parameters, protein S total and log (TAT),

the profiles over time did not significantly differ between the age groups. This

points to a general parallel change of coagulation parameters over time for the

separate age groups.
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Table 6.1 Characteristics of 64 patients

* mean (range)

Procoagulants (Table 6.2)

Raw data of factor V demonstrated no change over time or between age group. All

mean values except 2 were significantly higher as compared to mean reference

values. Although there were significant differences between study days for the

data expressed as % of mean (P = 0.02), none of the differences with day 29 was

significant. Factors II, IX and X all declined significantly (P < 0.001) compared to

day 29 values. In addition, there were significant differences between age groups.

The same applies to the data expressed as percentages of the age specific normal

reference values. Factor VII is the only protein whose level increased significantly

over time for the group as a whole, and there were no significant differences

between age groups.

Anticoagulants (Tables 6.3A and 6.3B)

All anticoagulants demonstrated a significant decline over time (P < 0.001). In

addition, for all parameters there were significant effects of age group. The AT,

protein C and S values generally were lower in the children aged 11 - 16 years as

compared to others. AT is shown in Figures 6.2A and 6.2B: while mean levels were

well above the mean reference value at day 29, all mean values were below at

later days.

While free protein S levels demonstrated the same profile over time for the

three age groups, this was not the case for total protein S (P = 0.005). However,

within each age group all levels were significantly lower than those on day 29. No

differences in free and total protein S between boys and girls were found (data not

shown).

Characteristics n

Non high risk / high risk 48 / 16

Male / female 42 / 22

Age years 6.7 (1 - 16.7)*

WBC (x 109/L) at diagnosis

< 50 50

50-100 9

>100 5

Age-group

1-5 years (F / M) 35 (12 / 23)

6-10 years (F / M) 15 (5 / 10)

11-16 years (F / M) 14 (5 / 9)

Immunophenotyping

c ALL 48

pre B ALL 12

T ALL 4



Table 6.2 Procoagulant factors

Data (percentages) are given as means (minimum-maximum). Reference mean values with 95% reference ranges for the different age groups according to

Monagle9 are given in italics. P-values from ANOVA comparisons between study days of raw data and of data expressed as % of normal are denoted by p days, p
age denotes ANOVA comparisons between the different age groups.

Paronal 6000 IU/m2

Day 29



Day 33



Day 36



Day 40



Day 43 Raw data

P days P age

% of normal

P days P age

Procoagulants

F V 139 148 137 140 139 0.08 0.07 0.02 0.42

1 - 5 years

(97; 67 - 127%)

140

105 - 189

157

64 - 284

146

77 - 272

142

88 - 197

150

61 - 282

6 - 10 years

(99; 56 - 141%)

141

81 - 216

146

65 - 231

136

69 - 210

153

110 - 49

142

90 - 186

11 - 16 years

(89; 67 - 141%)

136

94 - 204

120

49 - 198

113

49 - 180

121

32 - 200

117

46 - 188

F II 134 120 113 116 112 < 0.001 < 0.001 < 0.001 < 0.001

1 - 5 years

(89; 70 - 109%)

139

88 - 207

126

93 - 194

120

65 - 146

122

84 - 195

120

88 - 176

6 - 10 years

(89; 67 - 110%)

132

93 - 163

114

88 - 156

114

87 - 142

123

79 - 195

120

93 - 143

11 - 16 years

(90; 61 - 107%)

128

104 - 149

108

81 - 134

91

71 - 112

89

69 - 119

88

55 - 125

F VII 113 147 153 164 161 < 0.001 0.48 < 0.001 0.33

1 - 5 years

(111; 72 - 150%)

112

54 - 183

142

64 - 239

150

80 - 285

157

99 - 270

153

94 - 216

6 - 10 years

(113; 70 - 156%)

119

77 - 186

159

97 - 218

157

95 - 232

182

101 - 313

188

106 - 359

11 - 16 years

(118; 69 - 200%)

113

58 - 177

141

85 - 204

156

90 - 318

161

106 - 234

157

90 - 265

F IX 168 110 107 95 92 < 0.001 0.005 <0.001 < 0.001

1 - 5 years

(85; 44 - 127%)

171

82 - 240

119

46 - 200

117

26 - 217

104

43 - 186

107

49 - 216

6 - 10 years

(96; 48 - 145%)

170

87 - 222

101

49 - 183

106

40 - 153

93

42 - 159

88

15 - 136

11 - 16 years

(111; 64 - 216%)

153

41 - 212

96

50 - 153

74

40 - 112

73

38 - 131

65

30 - 100

F X 154 132 123 127 116 < 0.001 < 0.001 < 0.001 0.01

1 - 5 years

(98; 72 - 125%)

163

62 - 232

145

70 - 249

136

70 - 189

139

79 - 197

126

74 - 200

6 - 10 years

(97; 68 - 125%)

145

112 - 201

119

77 - 183

117

73 - 207

124

91 - 177

124

97 - 153

11 - 16 years

(91; 53 - 122%)

137

95 - 200

110

73 - 154

90

58 - 149

98

54 - 157

87

44 - 154



Table 6.3A Anticoagulant factors

Data (percentages) are given as means (minimum-maximum).
A. Reference mean values with 95% reference ranges for the different age groups according to Monagle9 are given in italics. P-values as in Table 6.2.

Table 6.3B Anticoagulant factors

B. Only raw data (percentages) are given. P-values from ANOVA comparisons between study days are denoted by p days, p age denotes ANOVA comparisons between the
different age groups.

Paronal 6000 IU/m2
Day 29


Day 33


Day 36


Day 40


Day 43 Raw data
P days P age

% of normal
P days P age

Anticoagulants

AT 153 106 98 91 86 < 0.001 < 0.001 < 0.001 < 0.001
1 - 5 years

(116; 101 - 131%)
157
103 - 202

113
78 - 142

106
72 - 144

102
71 - 147

94
62 - 138

6 - 10 years
(114; 95 - 134%)

154
130 - 183

100
83 - 117

92
71 - 116

84
59 - 109

84
56 - 112

11 - 16 years
(111; 96 - 126%)

144
118 - 168

95
71 - 120

78
88 - 95

67
42 - 87

71
42 - 114

Prot C act 172 123 114 110 100 < 0.001 0. 005 < 0.001 0. 07
1 - 5 years

(96; 65 - 127%)
174
100 - 329

129
45 - 216

123
55 - 171

118
78 - 188

109
53 - 186

6 - 10 years
(100; 71 - 129%)

174
132 - 258

119
82 - 186

113
68 - 177

111
71 - 162

104
69 - 147

11 - 16 years
(94; 66 - 118%)

167
84 - 228

111
42 - 142

89
39 - 165

87
34 - 138

79
37 - 144

Prot C ag 150 107 101 99 92 < 0.001 0.008
1 - 5 years 152

70 - 285
113
35 - 175

109
57 - 156

107
61 - 198

101
38 - 144

6 - 10 years 152
108 - 194

102
57 - 158

97
63 - 144

99
58 - 137

94
76 - 120

11 - 16 years 141
89 - 176

95
41 - 133

78
39 - 115

73
36 - 113

70
36 - 106

Prot S free 102 68 60 59 58 < 0.001 0.001
1 - 5 years 104

11 - 154
73
37 - 124

65
28 - 94

65
40 - 101

64
24 - 114

6 - 10 years 102
83 - 120

64
44 - 95

60
41 - 96

61
33 - 92

64
46 - 90

11 - 16 years 98
74 - 142

59
42 - 81

46
35 - 59

42
28 - 53

41
22 - 61

Prot S total 106 83 79 79 81 < 0.001 < 0.001
1 - 5 years 109

59 - 153
86
46 - 150

86
51 - 156

86
51 - 149

89
53 - 124

6 - 10 years 107
86 - 145

78
58 - 96

76
54 - 93

80
50 - 100

88
77 - 98

11 - 16 years 99
81 - 114

78
72 - 92

61
44 - 86

56
39 - 71

58
42 - 81
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Table 6.4 Parameters of thrombin generation

Data are given as means, or as medians when the distribution was skewed, and minimum-
maximum. P-values from ANOVA comparisons between study days are denoted by p days, p age
denotes ANOVA comparisons between the different age groups.

Thrombin generation (Table 6.4)

For fibrinogen differences were found between age groups (P = 0.005) as well as

between study days (P < 0.001). Compared to general reference values, fibrinogen

levels were decreased on day 29 in all age groups. They further declined

significantly on day 33 - 36, and increased significantly (P < 0.001) to levels still

below the normal reference levels on day 43.

Irrespective of age, F1+2 levels did not change over time during Paronal®

treatment (P = 0.33). The profiles over time of mean logarithmically transformed

TAT levels differed between age groups. Comparisons within each age group

showed significant differences with day 29 for age group 6 - 10 years and 11 - 16

years. For both these groups values at day 36 and 43 were significantly lower.

Fibrinolysis (Table 6.5)

α2-AP, plasminogen and PAP levels decreased significantly over time (P < 0.001).

For α2-AP and plasminogen also significant differences between age groups were

found (p < 0.001), but not for PAP (P = 0.73). Irrespective of age, D-dimers

demonstrated no changes over time.

Paronal 6000 IU/m2

Day 29



Day 33



Day 36



Day 40



Day 43 Raw data

P days P age

Thrombin generation

Fibrinogen g/L 1.20 0.92 0.94 1.10 1.60 < 0.001 0.005

1 - 5 years 1.34

0.1 - 2.6

1.08

0.1 - 2.0

1.15

0.1 - 2.5

1.29

0.1 - 2.4

1.64

0.5 - 2.7

6 - 10 years 1.13

0.5 - 1.9

0.81

0.5 - 1.6

0.84

0.1 - 1.6

1.18

0.1 - 2.2

1.47

0.1 - 2.2

11 - 16 years 0.93

0.6 - 1.6

0.51

0.1 - 1.0

0.45

0.1 - 0.9

0.60

0.1 - 0.7

1.57

0.1 - 5.9

F1+2 nmol/L median 1.10 1.08 1.19 1.09 1.15 0.14 0.33

1 - 5 years 0.91

0.49 - 20.54

0.98

0.44 - 2.07

1.10

0.35 - 111.9

1.01

0.52 - 6.92

1.02

0.6 - 3.3

6 - 10 years 1.32

0.6 - 3.99

1.16

0.55 - 2.36

1.47

0.45 - 2.78

1.25

0.56 - 127

1.47

0.58 - 3.13

11 - 16 years 1.46

0.72 - 2.04

1.29

0.48 - 2.08

1.51

0.57 - 2.41

1.23

1.0 - 2.29

1.28

0.85 - 1.98

TAT μg/L median 6.5 4.3 4.0 3.2 4.8 < 0.001 0.31

1 - 5 years 5.5

1.6 - 414

4.1

1.5 - 11.8

5.5

1.6 - 2157

4.2

1.9 - 148

6.4

2.0 - 46.3

6 - 10 years 7.4

1.8 - 54.4

5.8

2.3 - 36

3.9

1.5 - 15.8

2.4

1.4 - 4.6

5.1

2.5 - 12.1

11 - 16 years 6.5

2.6 - 27.7

3.5

2.1 - 8.6

3.0

1.7 - 5.2

3.2

2.0 - 7.3

3.3

2.2 - 9.0
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Table 6.5 Parameters of fibrinolysis

Data are given as means, or as medians when the distribution was skewed, and minimum-
maximum. P-values as in Table 6.4.

DISCUSSION

More intensive thrombin generation and reduced antithrombotic potential are

thought to be key factors for thrombo-embolic complications in children treated for

ALL. Most of the thrombotic events occur during induction therapy.17 In the

present study we analyzed changes in coagulation parameters in children treated

for ALL according to the DCOG-ALL-9 protocol. We report changes in the group as

a whole and age dependent changes.

New data on developmental hemostasis have recently been published by Monagle

et al.9 We used these reference values, even though most of our coagulation

parameters were determined with materials from a different manufacturer.

Practically, results obtained with reagents from different manufacturers should give

the same pattern over time, especially when calibrated against international

standards. Therefore, we feel the use of analyzers/reagents from different companies

is acceptable in pediatrics, provided good laboratory practice is adhered to.

Paronal 6000 IU/m2

Day 29



Day 33



Day 36



Day 40



Day 43 Raw data

p days p age

Fibrinolysis:

α2-AP 136 99 92 88 91 < 0.001 < 0.001

1 - 5 years 142

101 - 282

108

68 - 198

1.03

54 - 135

98

50 - 141

104

65 - 174

6 - 10 years 128

109 - 180

87

51 - 156

89

49 - 124

90

45 - 141

91

68 - 114

11 - 16 years 127

95 - 198

85

40 - 129

64

36 - 99

58

37 - 82

66

40 - 115

Plasminogen 116 82 79 89 85 < 0.001 < 0.001

1 - 5 years 123

108 - 234

91

57 - 153

87

48 - 145

94

50 - 142

95

59 - 144

6 - 10 years 111

82 - 140

73

51 - 99

80

41 - 132

106

50 - 375

94

62 - 128

11 - 16 years 105

81 - 131

67

48 - 97

55

41 - 75

57

33 - 77

60

43 - 84

PAP μg/L median 215 91 93 88 82 < 0.001 0.73

1 - 5 years 199

51 - 945

97

17 - 553

128

28 - 272

101

4 - 330

83

37 - 306

6 - 10 years 251

70 - 918

88

32 - 406

78

14 - 461

87

18 - 306

77

31 - 523

11 - 16 years 252

3 - 1403

73

28 - 459

95

24 - 325

58

16 - 475

85

21 - 317

D dimer mg/L median 0.12 0.12 0.11 0.10 0.12 0.12 0.25

1 - 5 years 0.10

0.03 - 0.47

0.12

0.05 - 0.23

0.09

0.05 - 0.23

0.09

0.03 - 0.33

0.11

0.07 - 0.52

6 - 10 years 0.13

0.09 - 0.31

0.12

0.07 - 0.39

0.09

0.07 - 0.33

0.10

0.08 - 0.31

0.12

0.03 - 0.41

11 - 16 years 0.18

0.05 - 0.47

0.12

0.03 - 0.24

0.16

0.05 - 0.24

0.13

0.06 - 0.28

0.17

0.06 - 0.22
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A raw data

B % of normal reference values

Figure 6.2 Plasma levels of AT in time
(A) Plasma levels in time of AT during the induction phase of the DCOG ALL-9 treatment
schedule. Observed raw data are given as means ± SEM.
(B) Means ± SEM per age group with data expressed as percentage of the normal reference
mean values per age group according to Monagle.9

The four week period of dexamethasone resulted in a hypercoagulable state on

day 29 due to upregulation of all coagulation parameters except fibrinogen, as

described earlier by Mall et al.18 The underlying mechanism of rising levels of

coagulation proteins with administration of corticosteroids remains to be

unraveled. Some insight comes from an animal study performed by Sevaljevic et

al.:19 they demonstrated that corticosteroids downregulate fibrinogen on a

transcriptional level.

In the present study, there were slight signs of thrombin generation but not of

fibrinolysis before the first dose of Paronal®. When dexamethasone doses were

tapered off from day 29 until day 43, treatment with four doses of 6,000 IU/m2 of
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Paronal® resulted in significant declining levels of nearly all coagulation proteins

measured, most prominently in the children aged 11 - 16 years. A similar pattern

was seen if data were expressed as percentages of age-related reference values.

Patterns of decline and recovery of the coagulation protein levels were parallel for

the three age groups. While pretreatment levels were reached by day 43 in the

younger children, recovery took longer in the oldest group. This effect might in

part be ascribed to different biological half-lives: F VII with a markedly short half-

life hardly demonstrated changes in time, and AT and protein S with half-lives of

about 60 hours tended to recover more slowly.

The activation markers F1+2 and D-dimer of thrombin generation and

fibrinolysis showed no consistent change in any of the age groups, only slightly

increased levels of TAT pointed to a persistent consumption of AT. Precursor B-ALL

and T-ALL demonstrated the same TAT levels in the different age groups, in

contrast to findings reported by Giordaneo et al.20 PAP levels of the oldest group

even declined to 58 g/L. The decrease in α2-AP and plasminogen in relation to the

parallel reduction in PAP levels points to a decrease in synthesis of α2-AP and

plasminogen during L-Asparaginase treatment in induction.7 A state of decreased

fibrinolytic potential remained. The highest risk of thrombosis seemed to present

itself at the end of Paronal treatment for the children aged 11 - 16 years, seeing

the more severe decline of anticoagulant and fibrinolytic parameters and the

slower recovery to normal levels compared to the younger children.

Monagle and colleagues demonstrated a reduced risk of thrombosis without

higher risk of bleeding in young children.9 The fibrinolytic state found in younger

children is comparable to that in adults.14 Only adolescents have been found to

have an impaired fibrinolytic response to venous occlusion when this was

compared to the fibrinolytic response of adults.21 Adolescents might therefore have

a higher risk of thrombosis. Then, interference of a disease like ALL and treatment

with steroids and L-Asparaginase might even increase the risk of thrombosis. As

we demonstrated here, the younger the child with ALL, the better he/she will be

protected from thrombo-embolic complications. Not only on account of

physiological mechanisms, but also because steroids and L-Asparaginase have

lesser impact on coagulation protein synthesis.

Extracellular amino acid depletion by L-Asparaginase influences the hepatic

synthesis of proteins.22 The influence of L-Asparaginase differed for the

biosynthesis of various coagulation proteins in our study: most protein levels

significantly decreased during L-Asparaginase treatment. Nevertheless, F V and F

VII levels stayed in the same normal range or even increased during

L-Asparaginase therapy. This might be due to increased production of F V by

reticulo-endothelial cells when production by hepatocytes is impaired. F VII has the

shortest half-life (4 - 7 hours) of the vitamin K dependent clotting factors. If

enough vitamin K becomes available, the production of F VII would probably be

adjusted immediately.

It is well known that different L-Asparaginase preparations have different

pharmacokinetic and pharmacodynamic properties.3,23,24 This is reflected by the

observed variability in coagulation parameters following therapy with different
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L-Asparaginase preparations, as we demonstrated in a randomized study.7 Nowak-

Gottl25-28 reported that children treated with Paronal show more changes than

those treated with an L-Asparaginase product such as Crasnitin. Regrettably, they

did not measure activation markers like PAP.29,30

L-Asparaginase alone may not be a major determinant in thrombo-embolism,

but other agents – especially steroids – were likely to modify the effects of L-

Asparaginase on hemostasis. Higher doses of steroids, as dictated by the DFCI-

protocols, lead to a much greater increase in levels of procoagulant factors and to

suppression of the fibrinolytic potential.31,32 These effects were thought to be

responsible for the high incidences of thrombo-embolic events in the DFCI-studies.

Not only higher doses of steroids but also the co-administration of L-Asparaginase

might raise the risk of thromboembolic disease.30 Monotherapy with L-Asparaginase

even leads to a more severe fall in coagulation proteins compared to concomitant

treatment with corticosteroids.29,30

There is discussion about the possible effects of hereditary prothrombotic risk

factors.33,34 Realizing that as such they have little importance in the development

of thrombo-embolic events in childhood, we think that in a hypercoagulable

situation due to antileukemic therapy with corticosteroids and L-Asparaginase they

indeed may be of influence. This would as well explain the low rate of symptomatic

thrombosis. We did not monitor these risk factors. Nevertheless, both the COALL

study – even using high dose L-Asparaginase (45.000 IU/m2) – and the PARKAA

study (prophylactic antithrombin replacement in kids with ALL on L-Asparaginase)

could not confirm a role of prothrombotic risk factors in the development of

thromboses during their treatment regimens.33,35

Recently, Weyrich et al. identified that mammalian target of rapamycin (mTOR)

inhibition induced platelet activation by thrombin and blocked clot retraction36 The

mTOR signaling pathway is a kinase, regulating cell growth. Possibly the inhibitory

effect of L-Asparaginase on mTOR37 leads as well to diminished clot retraction. This

may explain that the risk for thrombosis by L-Asparaginase is in part

counterbalanced by a diminished clot retraction.

CONCLUSION

We demonstrated that L-Asparaginase induced disturbances in coagulation and

fibrinolysis in children with newly diagnosed ALL are age specific. Twice weekly

doses of 6,000 IU/m2 of Paronal® administered after four weeks of dexamethasone

resulted in a higher risk of thrombosis for especially children aged 11 - 16 years.
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Intrathecal triple therapy   

VCR i.v. 2mg/m2         

DNR i.v. 25mg/m2       

DEXA p.o. 6mg/m2

6 MP p.o. 50mg/m2

PARONAL i.v.  (6000 IU/m2)          (10.000 IU/m2)

I I I I I I I # I I I weeks

1 15 29 43 104 125 146 days

induction intensification

INTRODUCTION

L-Asparaginase is an important drug in the treatment of childhood acute

lymphoblastic leukemia (ALL). Its influence on the coagulation system has been

extensively studied.1 L-Asparaginase is an enzyme leading to serum depletion of

asparagine and glutamine. Consequently, protein synthesis is depressed leading to

coagulation protein deficiencies as a side effect of antileukemic treatment. The

effect on antithrombotic proteins might induce an increased risk for thrombosis,

while the effects on procoagulant proteins might increase the bleeding risk. L-

Asparaginase is usually given in combination with other chemotherapeutic drugs

among which especially corticosteroids may also influence the coagulation system.

Corticosteroids may induce hypofibrinogenemia potentially leading to bleeding, but

also increase the risk for thrombotic events by the induction of a hypofibrinolytic

state in combination with an increase in procoagulant factors.2 So, in general, it is

difficult to analyze which coagulation disorders in children with ALL are due to L-

Asparaginase and which are due to concomitant use of other drugs such as

corticosteroids. In this study, we analyzed the influence of both these drugs

(Paronal® and dexamethasone) in one group of children during two different parts

of ALL therapy.

METHODS

During induction, according to the DCOG (Dutch Childhood Oncology Group)-ALL-9

treatment schedule,3 24 children with high-risk ALL were treated with among

others dexamethasone from day 1 to day 29 followed by 15 days of tapering to

zero and four doses of Paronal® (6000 IU/m2) on days 29, 33, 36 and 40. During

the intensification phase of this protocol, the treatment included one weekly dose

of Paronal® (10000 IU/m2) during 9 weeks and 7 days of dexamethasone once

every 3 weeks during the same 9 weeks (Figure 7.1).

Figure 7.1 DCOG-ALL-9 treatment strategy
The induction and intensification part for only HR patients are given. Data are analyzed during
induction treatment (days 29 - 43) and during intensification treatment (days 104 - 134).
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Blood samples were collected immediately before each Paronal® infusion to

analyze procoagulant (fibrinogen, F II, F V, F VII, F IX, F X) and anticoagulant

factors (antithrombin, protein C, protein S) and parameters of thrombin generation

(F1+2, thrombin-antithrombin (TAT) complex) and fibrinolysis (α2-antiplasmin,

plasminogen, plasmin-α2 antiplasmin (PAP) complex, D-dimer).

RESULTS

After 4 weeks of dexamethasone on day 29, all procoagulant and anticoagulant

factors demonstrated high levels, and a hypofibrinogenemia was observed (Figures

7.2 and 7.3). The four doses of Paronal® and tapering of the dose of dexamethasone

(days 29 - 43) had the following effects on the procoagulant parameters:

 after an initial further decrease, fibrinogen levels stabilized at low levels or

increased slightly (Figure 7.2A);

 F V levels stabilized at high levels (Figure 7.2B);

 F II, IX and X normalized (Figure 7.2C);

 only F VII increased to supranormal levels (Figure 7.2C);

 the anticoagulant parameters (AT, protein C and S) and the fibrinolytic potential

(plasminogen and α2-antiplasmin) decreased significantly leading to a

hypercoagulable state (Figures 7.3A and B);

 as a result of decreased protein synthesis of plasminogen and α2-antiplasmin,

PAP too decreased significantly (Figure 7.3C);

 D-dimers demonstrated no changes, nor did TAT and F1+2, pointing to no signs

of increased fibrinolysis or thrombin generation (Figure 7.3C).

In the intensification phase, only 11 children could be analyzed up to the sixth

Paronal® infusion because at that point already 13 of 24 children had switched to

another L-Asparaginase product (Erwinase or PEG-asparaginase) because of

allergic reactions.

Interestingly, the effect of 1 weekly dose of L-Asparaginase with 1 week

dexamethasone every 3 weeks during intensification was completely different

compared to the effect during induction therapy, when dexamethasone was

administered daily and L-Asparaginase twice a week:

 The levels of fibrinogen decreased significantly in relation to the 7-day

administration of dexamethasone (P < 0.0001) (Figure 7.2A) and recovered

during weekly L-Asparaginase administration in the absence of dexamethasone.

 F V did not demonstrate any durable changes (Figure 7.2B).

 F II, VII, IX and X increased during 1-week dexamethasone treatment and

normalized afterwards during weekly administration of L-Asparaginase (Figure

7.2C).

 The levels of anticoagulant proteins and plasminogen and α2-antiplasmin hardly

changed during this treatment phase (Figures 7.3A and B).

 No signs of increased thrombin generation and of fibrinolysis were monitored

(Figure 7.3C).
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A

B

C

Figure 7.2 Plasma levels of procoagulant parameters during induction and
intensification treatment

Plasma levels of fibrinogen (A), factor V (B) and vitamin K-dependent clotting factors (II, VII, IX
and X) (C) during the induction and the intensification phase of the DCOG-ALL-9 treatment
schedule.
During induction, dexamethasone 6 mg/m2 was given for 4 weeks followed by tapering to zero in

15 days; Paronal® 6000 IU/m2 was given twice a week on days 29, 33, 36 and 40.

Intensification started at day 104 with Paronal® 10000 IU/m2weekly and with 1 week
dexamethasone 6 mg/m2 every 3 weeks.

The dexamethasone periods are drawn in gray, and arrows mark the Paronal
®

infusions. Data
are given as means with standard error of the means. Normal reference ranges are marked with
dotted lines. Differences between groups were calculated using one-way analysis of variance
with Bonferroni’s multiple comparison test to determine significance; P = 0.05 (two sided) was
considered the limit of significance. The sign * refers to significant differences for comparison
with previous measurements.
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A

B

C

Figure 7.3 Plasma levels of anticoagulant parameters, parameters of fibrinolysis
and of thrombin generation during induction and intensification

Plasma levels of anticoagulant proteins (antithrombin, protein C, free protein S and total protein
S (A) and of plasminogen and α2-antiplasmin (B). Data are given as means with standard error
of the means. Normal reference ranges are marked with dotted lines. For the activation markers
thrombin–antithrombin complex, F1+2, plasmin–antiplasmin complex and D-dimers, data are
given as medians with 25th and 75th percentiles (C). Normal reference ranges are shown
between brackets.

The dexamethasone periods are drawn in gray, and arrows mark the Paronal® infusions.
Differences between groups were calculated using one-way analysis of variance, with
Bonferroni’s multiple comparison test to determine significance; P = 0.05 (two sided) was
considered the limit of significance. The sign * refers to significant differences for comparison
with previous measurements.
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DISCUSSION

The half-life of Paronal® has been calculated to be 23.0 ± 2.5 h.4 It could be

speculated that once a week 10,000 IU/m2 of Paronal® would allow a recovery

from diminished protein synthesis by L-Asparaginase, while twice weekly 6,000

IU/m2 of Paronal® would lead to a cumulative effect with no time for recovery. But,

it could also be hypothesized that the higher dose of Paronal® in the intensification

phase would have led to prolonged inhibition of coagulation protein synthesis. Our

data however, showed that the schedule of Paronal® once a week 10000 IU/m2

resulted only in minor changes in coagulation proteins. One week of

dexamethasone every 3 weeks in the intensification phase only, led to a significant

decline in the level of fibrinogen (Figure 7.2A), which was followed a week later by

a significant increase, whereas the combination of Paronal® and dexamethasone,

as applied in induction, resulted in a severe decline in anticoagulant proteins and

in a decreased fibrinolytic potential.

Based on these data, a hypercoagulable state was diagnosed during induction

treatment only, whereas during intensification with a higher dose of Paronal® in a

weekly schedule combined with only 1 week of dexamethasone every 3 weeks, the

risk for thrombosis was minimal. We conclude that there is a crucial interaction

between L-Asparaginase and dexamethasone in maintaining the balance between

bleeding and thrombosis during therapy in childhood ALL and the effects on the

coagulation system depend on the specific schedule of administration of these

drugs.
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The main aim of this thesis was to study the pharmacokinetic and

pharmacodynamic effects of one dose of PEG-Asparaginase in children with acute

lymphoblastic leukemia (ALL) in order to get insight into the mechanisms of

resistance to this drug. The second aim was to study which disturbances occur in

coagulation parameters upon administration of L-Asparaginase.

PHARMACOKINETICS

Currently three preparations of L-Asparaginase are available. Each preparation, E.

coli derived L-Asparaginase (Paronal), its pegylated form (Oncaspar) and the

product from Erwinia chrysanthemi (Erwinase), have different half-lives1 and peak

activities.2 A L-Asparaginase activity of higher than 75 to 100 IU/L was shown to

deplete asparagine from the serum of humans during several days.2,3 Equivalent

doses for optimal efficacy have been determined for different L-Asparaginase

preparations, indicating that 1 dose of 1000-2500 IU/m2 PEG-Asparaginase in 2

weeks is as effective as 5000 - 10.000 IU/m2 E. coli L-Asparaginase every 3 days

and 10.000 - 25.000 IU/m2 Erwinia L-Asparaginase every 2 days in the same 2

weeks:2,4-8

The administration of 1000 IU/m2 PEG-Asparaginase i.v. as monotherapy given

upfront of regular chemotherapy in newly diagnosed children with ALL resulted into

an enzyme activity of  100 IU/L for at least 10 days (this thesis). This resulted in

a complete depletion of serum asparagine levels ( 0.2 M) in all patients.

However, no complete asparagine depletion in the cerebrospinal fluid (CSF)

occurred. Similar data were recently also found by Rizzari et al.9 who used the

same dose of PEG-Asparaginase during ALL induction therapy. In a randomized

study by Avramis et al. between native E coli L-Asparaginase (6000 IU/m2 3 times

per week) and PEG-Asparaginase (2500 IU/m2 once) in children with standard risk

ALL, CSF asparagine fell to median 0.6 M on day 28 in the PEG-Asparaginase

treated children and to 0.3 M in the native E. coli L-Asparaginase treated group.10

In relapsed ALL patients weekly 2500 IU/m2 PEG-Asparaginase resulted in low but

still detectable concentrations of CSF asparagine (0.2 - 3 M).11 Several groups

have reported that sufficient CSF asparagine depletion ( 0.2 M) was obtained

when plasma L-Asparaginase activity was  100 IU/L.6,12-14 Ahlke et al.6 and Rizzari

et al.14 demonstrate complete CSF asparagine depletion (<0.2 M) during 28 days

using either 10.000, 5000 or 2500 IU/m2 E. coli L-Asparaginase or 10.000 IU/m2

Erwinia L-Asparaginase in comparable treatment schedules: 8 times L-

Asparaginase at 3 day intervals. The activity of native L-Asparaginase in CSF is

only about 0.2% of the L-Asparaginase activity in plasma.15 Berg et al.16 found

1000 - 2500 IU/m2 PEG-Asparaginase (Oncaspar) once in 2 weeks

5000 - 10.000 IU/m2 E. coli L-Asparaginase (Paronal) once in 3 days for 2 weeks

10.000 - 25.000 IU/m2 Erwinia L-Asparaginase (Erwinase) once in 2 - 3 days for 2 weeks
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that 2500 IU/m2 PEG-Asparaginase depleted asparagine in serum whereas variable

amounts were still detected in the CSF of monkeys. The St Jude Children's

Research Hospital Memphis analyzed the three different L-Asparaginase

preparations at equivalent dosages in children with newly diagnosed ALL.17 Median

CSF asparagine concentrations were always higher in patients receiving PEG-

Asparaginase compared to those receiving native E. coli L-Asparaginase or

Erwinase. It is important to notice that this was not a randomized study. Children

received E. coli L-Asparaginase in induction, and PEG-Asparaginase in reinduction.

Patients who developed clinical allergy to L-Asparaginase were switched to

Erwinase.

Combining our and previous results implies that L-Asparaginase and PEG-

Asparaginase may not cross the blood-brain barrier. We assume that (PEG)-

Asparaginase depletes the plasma asparagine pool and that CSF asparagine is

primarily derived from the systemic asparagine pool.15 It has been suggested that

asparagine enters from the blood to the CSF against a concentration gradient18 or

that the central nervous system (CNS) may be capable of synthesizing asparagine

locally despite depletion of the plasma asparagine pool.19 It is not known whether

an incomplete depletion of asparagine in the CSF results in a suboptimal

antileukemic effect. However, depletion of asparagine in the CSF may be

advocated to prevent meningeal leukemia. Treatment schedules including (PEG)-

Asparaginase should therefore include additional CNS prophylactic therapy.

The importance of intensive L-Asparaginase therapy in pediatric ALL has been

underlined by randomized studies of the Dana Farber Cancer Institute (DFCI)20 and

the European Organization for Research and Treatment of Cancer (EORTC).21 Both

studies randomized between native E. coli L-Asparaginase and Erwinia L-

Asparaginase at identical dose schedules. The DFCI prescribed 25.000 IU/m2 once

weekly and the EORTC 10.000 IU/m2 every 3 days of both drugs respectively.

Erwinia L-Asparaginase was associated with less toxicity but a higher number of

induction failures and relapses including those occurring in the CNS. Patients

receiving Erwinia L-Asparaginase did not experience continuous asparagine

depletion in contrast to children treated with E. coli L-Asparaginase. This may be

explained by the fact that Erwinia L-Asparaginase has a shorter half-life than E.

coli L-Asparaginase.1 The data showed that a continuous depletion of asparagine is

associated with a better clinical outcome than intermittent depletion.

The duration of L-Asparaginase treatment is also of prognostic importance.20

Treatment with L-Asparaginase for more than 25 weeks during the reinduction

phase of therapy resulted in a lower relapse rate than when children tolerated

L-Asparaginase for a shorter period.22-24

Intensified extended use of L-Asparaginase therapy proved to compensate for

treatment reduction in a study published by Pession et al.: standard risk patients

treated according the BFM like treatment protocol received a treatment reduction

in the second part of reinduction and were randomized for inclusion of 10.000

IU/m2 native L-Asparaginase for 20 weeks.23 The group with intensified L-

Asparaginase treatment had a 10% rise in the 10-year disease free survival

compared to the group without L-Asparaginase intensification.
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Therefore, current and future treatment protocols of different study groups

worldwide include intensified L-Asparaginase therapy. Also, plasma L-Asparaginase

activity levels should be preferably monitored to adapt dosage in order to get

continuous and complete asparagine depletion.

PHARMACODYNAMICS AND MECHANISM OF L-ASPARAGINASE RESISTANCE

Cell line studies showed that in vitro resistance to L-Asparaginase was mediated by

upregulation of asparagine synthetase (AS) mRNA.25,26 In this thesis we found that

depletion of asparagine in plasma upon in vivo exposure to PEG-Asparaginase

induced the level of AS mRNA in leukemic cells of children with ALL. However, both

baseline and in vivo L-Asparaginase induced levels of AS mRNA did not differ

between clinically good, intermediate and poor responders to this drug. Previous

studies showed that TEL-AML1 positive ALL patients are in vitro more sensitive to

L-Asparaginase than TEL-AML1 negative patients.27,28 However, TEL-AML1 positive

cells expressed higher baseline levels of AS than their TEL-AML1 negative

counterparts and both subtypes of ALL did not differ in their capacity to upregulate

AS upon exposure to L-Asparaginase.29 In addition, the baseline AS mRNA level

and in vitro L-Asparaginase resistance did correlate in TEL-AML1 negative

precursor B-ALL but not in TEL-AML1 positive ALL.29 Taken together these studies

imply that AS levels or upregulation of these levels is not a major cause of

L-Asparaginase resistance in pediatric ALL. However, recently Su et al.

demonstrated in ALL cell lines that measurement of asparagine synthetase protein,

rather than mRNA, might serve as an indicator of L-Asparaginase sensitivity.30

Ongoing studies, using novel antibodies directed against asparagine synthetase,

are addressing this issue in pediatric ALL.

Since AS is only one enzyme out of a complex network of enzymes involved in

the metabolism of amino acids, we also studied whether changes occurred in the

intracellular amount of individual amino acids that may point to causes of

resistance to L-Asparaginase. We found that the intracellular amount of 20 amino

acids did not change upon in vivo L-Asparaginase treatment of children with ALL.

Remarkably, L-Asparaginase treatment did not affect the percent of apoptotic cells

in the peripheral blood, despite the fact that the leukemic cell count decreased

upon treatment. In contrast, in vitro exposure to L-Asparaginase resulted in an

intracellular depletion of asparagine and induced apoptosis as was detected by

phosphatidyl serine externalization (Annexin V-positivity), caspase 3 activation and

PARP inactivation (Ref 31 and this thesis). Therefore, the fact that no increase in

the percent of apoptotic cells was detected in vivo suggests that the apoptotic

leukemic cells are immediately removed from the blood circulation by

phagocytosis. The exposure of phosphatidyl serine at the outer cell membrane of

apoptotic cells is known to attract macrophages for that purpose.32

The fact that no changes in the intracellular amino acid levels were detected in

the remaining viable leukemic cells is intriguing. This suggests that the surviving

and hence resistant leukemic cells have used a rescue mechanism since



General discussion and perspectives

115

L-Asparaginase clearly reduces intracellular asparagine levels when tested in vitro.

It has been shown that the microenvironment may supply asparagine and other

amino acids such as found by in vitro experiments using mesenchymal cells.33 It is

yet unknown whether this rescue mechanism also occurs in vivo. However, one

can envision that targeting ALL cells by reducing the expression of asparagine

synthetase of the bone marrow mesenchymal cells may improve the effectiveness

of L-Asparaginase therapy. Another explanation for the unchanged intracellular

amino acid levels is that leukemic cells may use glutamine, present in excess in

the plasma, as source for the amino moiety needed for de novo asparagine

synthesis. The observed upregulation of AS expression upon L-Asparaginase

exposure may then be used to re-synthesize sufficient asparagine using plasma

glutamine. In addition, other tissues (e.g. liver) may re-synthesize asparagine

although this will be immediately depleted again when L-Asparaginase plasma

levels are still high enough. In vitro, this rescue mechanism may not occur since

glutamine is being depleted from the culture medium due to an excess of

L-Asparaginase that is known to have some glutaminase activity too.34

Recent studies have shown that inhibition of glutamine synthetase potentiates

the toxicity of L-Asparaginase in cell lines derived from rhabdomyosarcoma and

osteosarcoma.35 In principle, inhibition of glutamine synthetase may also trigger

apoptosis of leukemic cells and may overcome L-Asparaginase resistance in

childhood ALL. However, glutamine starvation induces severe toxic effects on other

organ systems. Glutamine plays a crucial role as source of nitrogen and carbon for

DNA synthesis, as source of energy between organs, and is used for urea synthesis

in the liver, renal ammonia genesis and gluconeogenesis in both liver and kidney.

Therefore, it is unlikely that inhibition of glutamine synthesis will be effective

without side effects in a clinical setting.36

Of interest is that the baseline amino acid profile in ALL cells differed from

normal cells. Aspartic acid, glutamic acid and cystathionine levels were higher, and

taurine levels lower compared to normal peripheral blood mononuclear cells. In

addition, the total protein content of leukemic cells was ~2-fold lower than normal

lymphocytes. Proliferating leukemic cells may produce more aspartic acid and

glutamic acid due to a fast turnover of asparagine and glutamine.37 The high levels

of cystathionine and low levels of taurine might be related to a low activity of

-cystathionase in leukemic cells.38 This enzyme converts cystathionine into

cysteine (needed for taurine and glutathione production) and a lower cystathionase

activity interferes with the methionine-cysteine metabolism pathway by

accumulation of cystathionine. Glutathione plays an important role in the

detoxification of antioxidants and drugs in cells. Previous studies showed, however,

that the intracellular glutathione content is higher in leukemic cells than in

controls39 and that the glutathione level is not correlated with cellular resistance to

L-Asparaginase or other drugs in pediatric ALL.40,41 In this thesis we found that the

baseline levels of amino acids in leukemic cells do not differ between in vitro

L-Asparaginase sensitive and resistant cases nor between clinically good and poor

responders to L-Asparaginase. Therefore, the observed difference in amino acid
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levels between leukemic cells and normal lymphocytes presumably reflects a

difference in metabolic activity and/or cell type.

Genome wide approaches have been used to identify genes and gene

expression profiles associated with drug resistance of leukemic cells.42,43 Gene

expression patterns were identified that discriminated ALL cells resistant to single

antileukemic drugs like L-Asparaginase. Over-expression of genes encoding

ribosomal proteins was associated with L-Asparaginase resistance42 and discordant

sensitivity to vincristine.43 L-Asparaginase has been shown to inhibit the

mammalian target of rapamycin (mTOR) signaling pathway that is involved in

ribosomal protein synthesis in leukemic cells.44 Although ribosomal protein

inhibitors might theoretically sensitize leukemic cells to L-Asparaginase they might

on the other hand increase vincristine resistance due to the observed discordant

response to these two drugs.43 Ongoing clinical trials indicate that mTOR inhibitors

may have clinical potential as anticancer agents.45 However, the interference

between mTOR pathway members is highly complex and therefore also the

specificity of mTOR inhibitors is low.46 Interestingly, not only asparagine but also

glutamine starvation targets the mTOR signaling pathway suggesting that L-

Asparaginase may inhibit this mTOR pathway also through its glutaminase

activity.44

Response to L-Asparaginase in childhood ALL

In this thesis we showed that the in vivo response to a single dose of 1000 IU/m2

PEG-Asparaginase in children with newly diagnosed ALL is an independent

prognostic marker for long-term clinical outcome.47 Previous studies showed that

in vitro resistance to L-Asparaginase is linked to an unfavorable prognosis in

pediatric ALL.48-50 Not surprisingly, in vivo response to PEG-Asparaginase

correlated well with the in vitro sensitivity to L-Asparaginase (this thesis).

Favorable genotypes, e.g. TEL-AML1 positive ALL and hyperdiploid ALL, are

characterized by a high in vitro sensitivity to L-Asparaginase and by a good in vivo

response to PEG-Asparaginase. Unfavorable subtypes like T-ALL and BCR-

ABL/t(9;22) precursor B-ALL demonstrated a relative in vivo resistance to PEG-

Asparaginase (this thesis). T-ALL cells were also shown to be relatively resistant to

L-Asparaginase compared to B-lineage ALL.51 The in vivo response or the in vitro

resistance to PEG-Asparaginase might be used to stratify patients for risk-adapted

L-Asparaginase dosage and administration schedules.

HEMOSTASIS

One of the main side effects of L-Asparaginase therapy are thrombo-embolic

complications. These complications seem to be caused by a relationship between

asparagine depletion and reduced protein synthesis in the liver. Consumption

coagulopathy or a direct enzymatic breakdown of coagulation proteins52 do not

explain these complications.
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At the time of diagnosis of ALL we monitored an increased thrombin generation

and disseminated intravascular coagulation. This is in concordance with the

findings of Mitchell et al.53 and Uszinsky et al.54 Cancer cells may directly

synthesize procoagulant molecules and inflammatory cytokines. Malignant cells can

interact with vascular endothelial cells to produce a prothrombotic state by

comprising their anticoagulant properties and increasing the release of

procoagulant proteins like F VIII from endothelial stores.55 The window therapy

with 1000 IU/m2 PEG-Asparaginase resulted in a sharp decrease of all coagulation

parameters due to protein synthesis inhibition by L-Asparaginase (this thesis).

Native E coli L-Asparaginase53 compared to the pegylated L-Asparaginase used in

our studies yielded comparable coagulation disturbances as a risk factor for

thrombosis.

Most of the thrombotic events occur during induction therapy.56 The rate of

thrombosis was 5.2% in a meta-analysis of 1752 children with ALL.57 We analyzed

two induction schedules: in the DCOG-ALL-7 study 10.000 IU/m2 native E. coli L-

Asparaginase (Crasnitin) or Erwinia L-Asparaginase (Erwinase) was given twice a

week after 18 days of prednisone whereas in the DCOG-ALL-9 study 6000 IU/m2

Paronal was administered twice a week after 28 days of dexamethasone

treatment. The different half-lives of these three L-Asparaginase products resulted

in different effects on hemostasis: Erwinase with a half-life of only 7 hours

demonstrated the least effects on coagulation protein synthesis, whereas

Crasnitin administered in the same dose with a half-life of 18 hours and Paronal

with a half-life of 23 hours showed a significant decline in coagulation protein

synthesis. Of all coagulation proteins measured only factor V demonstrated no

severe impaired production. The fact that factor V is also produced by

reticuloendothelial cells may counteract the effect of impaired production in the

liver by hepatocytes due to L-Asparaginase therapy.58 Randomized studies of the

DFCI and the EORTC confirmed that native L-Asparaginase led to an increased risk

for thrombo-embolic events compared to Erwinase (but a decreased risk of

leukemic relapse) if administered in the same dose schedule.20,21

The period of prednisone or dexamethasone treatment before the first infusion

with L-Asparaginase differed between the two induction schedules we studied.

More upregulation of coagulation proteins was noticed in the ALL-9-treatment

schedule after 4 weeks of dexamethasone, compared to the ALL-7 schedule after

18 days of treatment with prednisone. Nevertheless, the tapering of corticosteroid

treatment together with the twice-weekly administration of L-Asparaginase

resulted in a hypercoagulable state in both schedules mainly due to a decrease in

antithrombotic proteins and proteins involved in fibrinolysis. The interaction

between L-Asparaginase and corticosteroids is crucial in disturbing the balance

between the risk on bleeding and thrombosis. A multi-center prospective study of

300 patients of the German BFM and 120 patients of the German COALL study

group confirmed these data: venous thromboembolism occurred in 10% of

patients treated according to the BFM schedule during induction and in 1.7%

during re-induction (total 11.7%), but thrombotic events occurred in only 0.8%

during induction and in 1.7% during re-induction in the children treated according
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to the COALL protocol (total 2.5%).59 The difference in thrombotic incidence was

due to differences in dose-schedule of steroids and L-Asparaginase. In BFM

protocols L-Asparaginase is administered from early induction concurrent with

steroids, like in the Dutch protocols. In the COALL regime L-Asparaginase is

administered during consolidation without corticosteroids. One week only of

dexamethasone every 3 weeks in combination with weekly L-Asparaginase during

consolidation also caused much less hypercoagulability than the combination of bi-

weekly L-Asparaginase with continuous dexamethasone treatment (this thesis).

It is known that older children are at higher risk for thrombo-embolic

events.20,22,60 We provided evidence that older children demonstrate more

inhibition in coagulation protein synthesis compared to younger children after

L-Asparaginase therapy (this thesis). These findings can explain why the risk of

thrombosis or bleeding after L-Asparaginase therapy is age-dependent.61-63

The question remains why a relatively low rate of symptomatic thrombosis of

5% during ALL induction treatment is found57 if we take notice of all coagulation

disturbances found. Children with hereditary prothrombotic risk factors, i.e. factor

V Leiden, the prothrombin variant, the MTHFR mutation, deficiencies of protein C,

S or antithrombin are not at a high risk to develop thrombosis.64 However, the

combination of one of these risk factors together with a hypercoagulable situation

due to antileukemic therapy with corticosteroids and L-Asparaginase may induce

thrombotic events.59,65 However, the COALL study, using high dose L-Asparaginase

(45.000 IU/m2) as well as the PARKAA study (prophylactic antithrombin

replacement in kids with ALL on L-Asparaginase) could not confirm a role of

prothrombotic risk factors in the development of thromboses during their

treatment regimens.65,66 Notably, the main goal of the PARKAA study was to

determine if prophylactic treatment with antithrombin would reduce the incidence

in thrombotic events. However, this appeared not to be the case.

The effect of L-Asparaginase on hemostatic protein synthesis was linked to

depletion of free asparagine and glutamine in the liver.58,67 Bushman proved that

L-Asparaginase affected plasma levels of antithrombin by interfering with

translation and/or secretion of the antithrombin protein in liver cells.67 As

coagulation proteins are mainly produced by the liver, disturbances in the

synthesis of these proteins due to amino acid starvation are thus believed to be

due to an effect of L-Asparaginase on protein synthesis in the liver.

The mTOR signaling pathway regulates cell growth by controling translation.46

Rapamycin and L-Asparaginase inhibit the mTOR pathway, thereby interfering with

the synthesis of ribosomal proteins.68 Weyrich et al. recently identified that

rapamycin inhibits platelet activation induced by thrombin and blocks clot

retraction.69 Possibly the inhibitory effect of L-Asparaginase on mTOR also

diminishes the clot retraction. This may explain that the risk for thrombosis is in

part counterbalanced by a diminished clot retraction, and thus accounts for the

relatively low rate of symptomatic thrombosis during ALL induction treatment. To

better understand the process of thrombin generation and fibrinolysis during

L-Asparaginase therapy, further evaluation of these processes with newly

developed techniques like modern thromboelastography might be considered.
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In conclusion, the type and the dose of L-Asparaginase, the timing of

concomitant corticosteroid therapy and the age of the patient, determine the effect

of L-Asparaginase on the coagulation system. These factors should be taken into

account when new treatment regimens are developed for children with ALL. Older

children with one or more inherited prothrombotic defects receiving a combination

of L-Asparaginase with concomitant corticosteroid treatment in induction therapy

appear to be at highest risk of thrombosis. In our opinion, only for these children

the use of low molecular weight heparins70,71 should be investigated in order to

decrease the risk of thrombotic complications.
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SUMMARY

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and

adolescents. Treatment outcome has improved impressively through the years. In

the 1990's the five-year event free survival rates generally ranged from 70% to

85%. Risk factors for treatment failure are age and leukocyte count at diagnosis,

immunophenotype, genotype and early response to chemotherapy. Different clinical

outcomes associated with various subtypes of ALL are partly attributed to drug

sensitivity or resistance of leukemic cells due to differences in molecular

pharmacodynamics. Drug resistance is an important cause of treatment failure.

Therefore, a better understanding of the responsible mechanisms of resistance to

chemotherapy in ALL is needed.

Together with vincristine, a corticosteroid and sometimes an anthracycline,

L-Asparaginase forms the backbone of induction treatment for childhood ALL.

L-Asparaginase is also an important component of reinduction and intensification

phases of combination chemotherapy. Intensified L-Asparaginase therapy improved

treatment outcome compared to that achieved with less intensive L-Asparaginase

therapy.

PART I

Part I of this thesis focuses on the pharmacokinetics and pharmacodynamics of

L-Asparaginase. L-Asparaginase hydrolyzes asparagine into aspartic acid and

ammonia, which reduces the availability of asparagine for protein synthesis.

Resistance to L-Asparaginase has been associated with upregulation of asparagine

synthetase (AS) mRNA expression in cell line studies, but inconsistent data were

found in primary patient samples. In chapter two we investigated whether baseline

levels of AS mRNA before start of treatment and/or PEG-Asparaginase-induced

changes in AS mRNA expression in leukemic cells were associated with the clinical

response to PEG-Asparaginase given as monotherapy upfront combination

chemotherapy in children with ALL. The baseline AS expression levels were in the

same range as in lymphocytes of healthy controls. In all patients upregulation of AS

mRNA in the leukemic cells occurred within 24 hours after in vivo PEG-Asparaginase

exposure and thereafter the expression levels did not further change. However, the

level of upregulation of AS was not associated with a poor clinical response to PEG-

Asparaginase. In addition, baseline and L-Asparaginase induced changes in AS mRNA

expression did not differ between in vitro L-Asparaginase resistant T and L-

Asparaginase sensitive c/preB ALL cases. Moreover, TEL-AML1 rearranged and

hyperdiploid cases did not show an impaired in vivo upregulation of AS that might

have explained their high in vitro sensitivity to L-Asparaginase. Therefore, the AS

upregulation which is a consequence of amino acid deprivation by L-Asparaginase, is

not the key-factor explaining resistance to L-Asparaginase in pediatric ALL.

In chapter three we studied mechanisms of L-Asparaginase resistance other

than AS mRNA upregulation by determining several apoptotic features and both



Summary

127

serum and intracellular amino acid levels. Remarkably, the percentage of apoptotic

cells and apoptotic read-out markers in leukemic cells did not change in vivo after

administration of PEG-Asparaginase. Also in vivo no changes were observed in the

levels of intracellular amino acids, including asparagine, aspartic acid, glutamine and

glutamic acid, whereas these amino acids were affected in the serum of these

patients. In contrast, in vitro exposure of patients' leukemic cells to L-Asparaginase

induced apoptosis and affected the intracellular levels of amino acids. These data

suggest that changes in apoptotic features and in intracellular amino acid levels can

not be detected in freshly obtained patients' samples during treatment, since these

affected cells are presumably quickly eliminated from the peripheral blood. Hence,

only cells survive that do have an unchanged amino acid composition.

The intracellular levels of aspartic and glutamic acid were higher compared to

normal cells. This might be related to a fast turnover of asparagine and glutamine in

the proliferating leukemic blasts. The baseline intracellular levels of cystathionine

were higher and taurine levels were lower in leukemic cells at diagnosis compared to

normal cells. This may point to a low activity of -cystathionase in leukemic cells

resulting in an abnormal methionine-cysteine pathway, that reduces the conversion

of cystathionine into taurine.

In vivo responsiveness to PEG-Asparaginase was monitored by analyzing the

decrease in leukemic cells during a therapeutic window with this drug before start of

combination chemotherapy. We found that children with unfavorable

immunophenotypic or genotypic characteristics (T-ALL and BCR-ABL positive ALL)

were in vivo more resistant to PEG-Asparaginase than children with a favorable

genotype (TEL-AML1 positive and hyperdiploid ALL). We also showed that in vitro

sensitivity to L-Asparaginase was related to a good clinical response to PEG-

Asparaginase. The clinical response to PEG-Asparaginase as well as the in vitro

sensitivity to L-Asparaginase are predictive for long-term clinical outcome in pediatric

ALL. One additional dose of PEG-Asparaginase did not increase clinical toxicity with

regard to the allergic reactions to next L-Asparaginase infusions nor with regard to

changes in coagulation parameters or the incidence of thrombosis later on during

therapy.

The pharmacokinetics of PEG-Asparaginase are not well characterized in

cerebrospinal fluid (CSF). In chapter four we analyzed the kinetics of one dose of

PEG-Asparaginase in the CSF. Despite the fact that a dose of 1000 IU/m2 PEG-

Asparaginase resulted in plasma activity levels > 100 IU/L and thus, as expected,

plasma asparagine levels < 0.2 M for more than 10 days, asparagine was still

detectable in the CSF. Thus, PEG-Asparaginase at this dose could not fully deplete

asparagine in the CSF.
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PART II

The toxic effect of L-Asparaginase therapy is related to decreased protein synthesis.

Important side effects of L-Asparaginase are disturbances in the coagulation system.

In part II the results of studies focusing on these side effects are described.

Changes observed in coagulation parameters in patients treated with L-

Asparaginase have not been consistent in different series of patients, which can be

related to differences in age, genetic predisposition for hypercoagulability, co-

administration of other chemotherapy and the product of L-Asparaginase used. In

chapter five we describe a randomized study in childhood ALL, in which native E. coli

L-Asparaginase (Crasnitin®, Bayer, Leverkusen, Germany) is compared to L-

Asparaginase derived from Erwinia chrysanthemi (Erwinase®, Porton Products,

London, United Kingdom). Initial treatment with prednisone during ALL induction gave

rise to increased thrombin generation as was demonstrated by increased F1+2

(prothrombin fragment 1+2) and TAT (thrombin-antithrombin complex) levels.

Addition of L-Asparaginase to the induction therapy lead to a decreased fibrinolytic

potential due to decreased levels of alpha2-antiplasmin and plasminogen in children

treated with E. coli L-Asparaginase but not in children treated with Erwinase. Thus, the

use of prednisone in combination with E. coli L-Asparaginase (Crasnitin, Bayer) but

not Erwinase led to an increased risk for thrombosis.

Older children seem to be at higher risk for thrombo-embolic events during

L-Asparaginase therapy than younger children. However, till date no studies on age-

related changes in coagulation parameters due to L-Asparaginase have been

performed. In chapter six we report on the effect of age on changes in coagulation

and fibrinolysis in children with newly diagnosed ALL during induction therapy, which

were treated according to the DCOG-ALL-9 treatment schedule. The effects of a four-

week period of dexamethasone resulted in a hypercoagulable state due to

upregulation of all coagulation parameters except fibrinogen. Thereafter, during

tapering of dexamethasone and during administration of L-Asparaginase it appears

that larger effects on the levels of coagulation proteins were found in older children.

All anticoagulant proteins (AT, protein C and protein S) declined significantly, the

more so in children aged 11 - 16 years. The fibrinolytic potential was decreased most

in the oldest group of children and recovery to normal levels of alpha2-antiplasmin

and plasminogen took longer in older children compared to younger children. In

conclusion, the sum of changes in coagulation proteins induced by L-Asparaginase

contributes to the increased risk for thrombosis in children between 11-16 years of

age.

In addition to the clinical and biological effects of one in vivo systemic dose of

PEG-Asparaginase as described in chapter four, we also measured the effects of

monotherapy with one dose of PEG-Asparaginase on the coagulation system in this

chapter. At diagnosis data pointed to enhanced thrombin generation. Consumption

coagulopathy was monitored in 17 patients. Giordano et al. suggested that T ALL had

higher TAT (thrombin-antithrombin complex) levels than precursor B at diagnosis. We

could not confirm this: both precursor B and T ALL patients demonstrated equally

increased levels at diagnosis. Uszinsky et al. suggested that about 70% of children



Summary

129

with ALL had high TAT levels at diagnosis related to the disease. We analyzed 38

children at diagnosis and found 35 (92%) patients with increased TAT levels at

diagnosis.

A profound decrease in nearly all coagulation factors was observed five days after

PEG-Asparaginase administration, with a decrease in thrombin generation and in

fibrinolytic potential. No clinical thrombo-embolic complications were seen in this

period.

L-Asparaginase is mostly used in combination with other drugs, like corticosteroids.

Chapter seven reports on changes in coagulation parameters in two different

combination chemotherapy schedules in a group of high-risk ALL patients. During

induction therapy according to the DCOG-ALL-9 protocol dexamethasone was

administered daily for 4 weeks followed by 2 weeks of tapering during which native

L-Asparaginase was given twice a week; during intensification one weekly dose of

the same native L-Asparaginase was combined with one week dexamethasone every

three weeks. During induction the same observations were made as described in

chapter six, i.e. patients had an increased risk for thrombosis during the induction

phase of combination chemotherapy. However, during intensification the levels of the

coagulation proteins did not significantly change. Only fibrinogen changed

significantly upon administration of dexamethasone during 7 days. One week of

dexamethasone therapy every 3 weeks combined with weekly infusions of Paronal

caused much less hypercoagulability compared to weekly Paronal after a prolonged

period of dexamethasone and tapering dexamethasone to zero. We concluded that

concomitant treatment of L-Asparaginase and dexamethasone interferes with the

balance between bleeding and thrombosis during L-Asparaginase therapy in

childhood ALL.

PART III

Finally, our findings presented in this thesis are put in perspective and possible

directions for the future are discussed in chapter 8.
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SAMENVATTING

Algemeen

Acute lymfatische leukemie (ALL) is de meest voorkomende vorm van kanker op de

kinderleeftijd. In Nederland wordt elk jaar bij 120 kinderen deze diagnose gesteld.

De behandeling bestaat uit chemotherapie gedurende twee jaar. De kans op

genezing is de laatste decennia aanzienlijk toegenomen. Met behulp van

combinatiechemotherapie geneest 80 - 85%. Toch geneest dus nog een aanzienlijk

percentage niet. Hierdoor blijft recidief-ALL van alle vormen van kinderkanker de

belangrijkste doodsoorzaak. Risicofactoren voor het terugkomen van de ziekte zijn:

de leeftijd, het aantal witte bloedcellen (leukemiecellen) bij diagnose, het

immunophenotype (het differentiatie-stadium van de leukemiecel), het genotype (de

aanwezigheid van bepaalde chromosomale afwijkingen in de leukemiecel) en de

eerste reactie op de ingestelde behandeling. Het verschil in behandelingsresultaten

van alle subtypes van ALL wordt voor een deel toegeschreven aan de gevoeligheid of

ongevoeligheid van leukemiecellen voor de medicijnen.

L-Asparaginase

De behandeling van ALL is vastgelegd in protocollen. Elk type leukemie wordt

tegenwoordig volgens een eigen protocol behandeld.

De inductietherapie van een behandelingsprotocol voor ALL is erop gericht om in

4 tot 6 weken een complete morfologische remissie te bewerkstelligen. L-

Asparaginase neemt naast vincristine, een corticosteroid en soms een anthracycline,

een zeer belangrijke plaats in bij de inductiebehandeling. Na de inductie volgt een

behandeling gericht op het voorkomen van uitbreiden van de leukemie naar de

hersenen, vervolgens een re-inductie- en/of een intensificatie fase. Uiteindelijk volgt

een onderhoudsbehandeling, waardoor de totale behandeling 2 jaar duurt.

Toevoegen van L-Asparaginase aan de inductie-, re-inductie- en aan een eventuele

intensificatie fase is in de behandeling van grote waarde gebleken. Een meer

intensieve behandeling met L-Asparaginase verbeterde de uiteindelijke kans op

genezing.

In hoofdstuk 1 beschrijven we de ontwikkeling van L-Asparaginase, via een bij

toeval ontdekt geneesmiddel tot een onmisbaar product in de behandeling van ALL

bij kinderen. Elk geneesmiddel zal zich op een bepaalde manier in het menselijk

lichaam gedragen. Pharmacokinetiek is het bestuderen van de opname, de verdeling,

het metabolisme en de uitscheiding van medicijnen in het menselijk lichaam.

Pharmacodynamiek beschrijft de relatie tussen de pharmacokinetiek van bepaalde

medicijnen en hun pharmacologische effect op de ziekte. Verschillende medicijnen,

dus ook de verschillende vormen van L-Asparaginase, zullen een verschil in

pharmacodynamiek vertonen. De gevoeligheid (de sensitiviteit) en de ongevoeligheid

(de resistentie) voor medicijnen kunnen door verschillen in pharmacodynamiek

worden bepaald. Resistentie tegen geneesmiddelen tegen leukemie is een

belangrijke oorzaak van therapiefalen. Daarom is een beter begrip noodzakelijk van

het mechanisme dat eventuele resistentie tegen L-Asparaginase veroorzaakt.
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DEEL I

Pharmacokinetiek en pharmacodynamiek van L-Asparaginase

Deel I van dit proefschrift is gericht op de pharmacokinetiek en de

pharmacodynamiek van L-Asparaginase. L-Asparaginase is een enzym dat

asparagine omzet in aspartaat en ammoniak. Dit leidt tot een tekort aan het

aminozuur asparagine waardoor er minder asparagine beschikbaar komt voor de

aanmaak van eiwitten. Waarschijnlijk beschikken juist leukemiecellen niet over het

enzym asparagine-synthetase dat de vorming van asparagine weer stimuleert, om

dit tekort aan asparagine op te vangen. Het tekort aan asparagine zal leiden tot

afsterven van de leukemiecellen. Laboratorium studies op gekweekte cellijnen (in

vitro-studies) wezen erop dat leukemische cellijnen die ongevoelig waren voor L-

Asparaginase wel asparagine-synthetase konden produceren. Hierdoor werd dus de

antileukemische werking van L-Asparaginase tenietgedaan. Bij leukemiecellen van

patiënten was hier tot op heden geen onderzoek naar gedaan.

In hoofdstuk 2 beschrijven wij onze studie naar de concentraties mRNA van

asparagine-synthetase bij diagnose van de leukemie, dus voordat de behandeling is

begonnen, en na behandeling met 1 gift PEG-Asparaginase. Wij onderzochten of de

veranderingen in de expressie van het mRNA van asparagine-synthetase gekoppeld

waren aan de klinische respons op PEG-Asparaginase. De asparagine-synthetase

expressie was bij diagnose even hoog in ALL-cellen als in gezonde witte bloedcellen.

Bij alle kinderen met ALL maten wij binnen 24 uur na de behandeling met PEG-

Asparaginase een duidelijke 'opregulatie' van het asparagine-synthetase. Deze

toegenomen concentraties bleven in daarop volgende dagen gelijk. Opvallend was

dat de mate van opregulatie niet gecorreleerd was aan een slechtere klinische reactie

op PEG-Asparaginase. Bovendien verschilde de expressie van asparagine-synthetase

bij diagnose en na behandeling met PEG-Asparaginase niet tussen T-ALL cellen die in

vitro (buiten het lichaam getest) voor L-Asparaginase relatief ongevoelig zijn en de

voor L-Asparaginase gevoelige voorloper B-ALL-cellen. Kinderen met de

chromosomale afwijking TEL-AML1 of met hyperdiploïdie (meer dan 50

chromosomen) in hun leukemiecellen vertoonden geen lagere waardes van de

asparagine-synthetase expressie, die hun hogere gevoeligheid voor L-Asparaginase

zou hebben kunnen verklaren. Kennelijk is opregulatie van asparagine-synthetase,

die optreedt als reactie op het tekort aan asparagine dat door L-Asparaginase wordt

veroorzaakt, dus in vivo, niet een belangrijke oorzaak van resistentie tegen het

middel L-Asparaginase.

In hoofdstuk 3 zochten we naar andere mechanismen die resistentie tegen

L-Asparaginase zouden kunnen verklaren. We keken naar het fenomeen apoptose

(gereguleerde celdood) en we onderzochten het effect van L-Asparaginase op de

aminozuren in de leukemiecellen en in het bloed. Vreemd genoeg veranderden de

apoptose-parameters die wij testten niet wanneer de kinderen waren behandeld met

PEG-Asparaginase, terwijl er klinisch toch een duidelijke afname was van het aantal

leukemiecellen. Ook de concentraties van aminozuren in de leukemiecellen bleven

hetzelfde, in tegenstelling tot de waardes in het bloed van de patiënten. Als we

daarentegen dezelfde leukemiecellen buiten het lichaam (in vitro) bloot stelden aan



Chapter 9

132

L-Asparaginase konden we wel apoptose meten en ook veranderingen in de

intracellulaire aminozuren registreren. Dit betekent dus dat we veranderingen in

apoptose en in de concentraties van aminozuren in de leukemie cellen in vivo niet

kunnen vastleggen. Kennelijk worden leukemiecellen die aangepakt zijn door

L-Asparaginase onmiddellijk uit de bloedcirculatie verwijderd. Alleen cellen met een

normale aminozuursamenstelling kunnen overleven.

Bij diagnose waren de concentraties van aspartaat en glutamaat in de

leukemiecellen hoger dan in gezonde witte bloedcellen. Dit kan misschien verklaard

worden door het feit dat leukemiecellen zich snel delen en daardoor een hoge

turnover van asparagine en glutamine in aspartaat en glutamaat hebben. Ook het

cystathionine-gehalte was bij diagnose hoger, terwijl taurine juist een lagere

concentratie had ten opzichte van normale cellen. Dit wijst waarschijnlijk op een lage

activiteit van het enzym -cystathionase in leukemiecellen, waardoor minder

cystathionine in taurine kan worden omgezet.

De in vivo respons van de leukemie voor PEG-Asparaginase konden we bepalen

aan de hand van de afname van het aantal leukemische cellen tijdens de 5 dagen

tussen de gift PEG-Asparaginase en de start van de verdere chemotherapie. Kinderen

met een ongunstig immunophenotype of genotype (zoals T-cel-leukemie en

Philadelphia chromosoom positieve leukemie) waren in vivo meer resistent voor PEG-

Asparaginase dan kinderen met een gunstig genotype (zoals TEL-AML1 positieve

leukemie of hyperdiploïdie). Bovendien vonden we dat die leukemie die in vitro

gevoelig was voor L-Asparaginase ook een goede klinische respons in vivo op PEG-

Asparaginase vertoonde. De klinische respons op PEG-Asparaginase bleek net zoals

de in vitro gevoeligheid voor L-Asparaginase de overlevingskans op lange termijn te

kunnen voorspellen.

Deze ene extra gift PEG-Asparaginase zorgde later in de behandeling niet voor

extra toxiciteit. Het aantal allergische reacties op L-Asparaginase bij volgende giften

van dit medicijn was niet verhoogd. Ook traden er niet meer complicaties, zoals

bloedingen of tromboses, op door veranderingen in de stolling die veroorzaakt

kunnen worden door L-Asparaginase.

De pharmacokinetiek van PEG-Asparaginase in de hersenvloeistof (liquor) is niet

goed bekend. In hoofdstuk 4 onderzochten we de kinetiek van 1 dosis PEG-

Asparaginase in de liquor. Met 1 gift PEG-Asparaginase bereikten we, zoals verwacht,

gedurende 10 dagen een L-Asparaginase concentratie in het bloed van meer dan 100

IU/L en hiermee een volledige depletie van asparagine (< 0.2 M). Toch konden we

in de liquor nog steeds asparagine aantonen. Deze dosering PEG-Asparaginase leidde

dus niet tot een volledige depletie van asparagine in de hersenvloeistof.

DEEL II

L-Asparaginase en de bloedstolling

De effectiviteit van L-Asparaginase berust op het teweeg brengen van een compleet

tekort aan asparagine in bloed en dus in de leukemiecellen. Dit tekort aan

asparagine is echter ook de oorzaak van bijwerkingen van L-Asparaginase. Een
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verminderde eiwitaanmaak door een tekort aan asparagine in de lever veroorzaakt

stoornissen in de aanmaak van stollingseiwitten. In deel II richten we ons op deze

bijwerking van L-Asparaginase.

De veranderingen die door L-Asparaginase in de bloedstolling ontstaan zijn

afhankelijk van, de leeftijd van de patiënt, de aanleg voor trombose, andere

tegelijkertijd toegediende medicatie en het soort L-Asparaginase dat wordt

voorgeschreven. In hoofdstuk 5 beschrijven wij een gerandomiseerde studie,

waarin kinderen met ALL volgens een zelfde protocol werden behandeld, met als

enige verschil Crasnitin (L-Asparaginase geproduceerd uit een E. coli-stam) in de

ene groep en Erwinase (een L-Asparaginase gemaakt van Erwinia chrysanthemi) in

de andere groep. De eerste fase van de inductiebehandeling met o.a. prednison

leidde tot toegenomen stolselaanmaak (thrombinegeneratie). Het toevoegen van L-

Asparaginase aan de behandeling veroorzaakte alleen in de groep behandeld met

Crasnitin een forse afname van de stollingseiwitten die nodig zijn om een stolsel

weer af te breken, de fibrinolyse. Een toegenomen thrombinegeneratie tezamen met

een afgenomen potentie voor fibrinolyse leidt tot een verhoogd risico op trombose.

De oorzaak van het feit dat dit alleen gebeurde in de groep die met prednison en

Crasnitin was behandeld en niet in de groep die met prednison en Erwinase was

behandeld, bleek te liggen in verschillen in de pharmacokinetiek van deze twee L-

Asparaginases.

Uit ervaring weten we dat oudere kinderen vaker een trombose krijgen tijdens de

inductiebehandeling van ALL dan jongere kinderen. Tot nu toe was er geen

onderzoek gedaan naar het effect van L-Asparaginase op stollingseiwitten bij

kinderen van verschillende leeftijdscategorieën. In hoofdstuk 6 hebben we gekeken

of de leeftijd van kinderen met ALL van invloed was op het effect van de L-

Asparaginase-behandeling op de stolselaanmaak en de stolselafbraak. Bij alle

kinderen leidde 4 weken behandeling in de inductie met dexamethason tot een zeer

actieve thrombinegeneratie doordat bijna alle stollingsfactoren werden opgejaagd

door corticosteroïden. Tijdens het afbouwen van de dexamethason en het

tegelijkertijd starten van de behandeling met L-Asparaginase daalden alle

stollingsparameters fors, door een verminderde eiwitaanmaak bij het tekort aan

asparagine dat L-Asparaginase had bewerkstelligd. De grootste daling in de

stollingseiwitten die tegen trombose beschermen en van de eiwitten die een gemaakt

stolsel moeten afbreken, trad op bij kinderen ouder dan 11 jaar. Bovendien duurde

ook het herstel naar normale waardes langer bij de oudere kinderen dan bij jongere.

Deze leeftijdsafhankelijke verschillen in door steroïden en L-Asparaginase

veroorzaakte veranderingen in de bloedstolling verklaren voor een deel het

verhoogde risico op trombose tijdens de inductiebehandeling van ALL bij de oudere

kinderen.

In hoofdstuk 4 analyseerden we het effect van 1 dosis PEG-Asparaginase als

monotherapie op de bloedstolling. Bij diagnose van ALL vertoonden de kinderen een

geactiveerde stolling, zowel een toegenomen thrombinegeneratie als ook tekenen

van verhoogde stolselafbraak. Dit is een bekend gegeven bij kwaadaardige

aandoeningen. Deze afwijkingen bleken in onze studie niet gecorreleerd aan een

bepaald type leukemie, zoals anderen wel eens beschreven hadden. De concentratie
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van bijna alle stollingseiwitten nam fors af na 1 gift PEG-Asparaginase. Dit leidde bij

geen van de kinderen tot een klinische complicatie.

L-Asparaginase wordt meestal met andere middelen gecombineerd in de

behandeling van ALL. Vooral de combinatie met corticosteroïden lijkt van invloed op

het effect van L-Asparaginase op de stolling. In hoofdstuk 7 beschrijven we het

effect van 1 soort L-Asparaginase in relatie tot twee verschillende schema's van de

corticosteroïd medicatie. Kinderen met ALL werden tussen 1997 en 2004 in de

inductie met de combinatie dexamethason en L-Asparaginase behandeld en tevens in

een fase van intensificatie. In de inductie bestaat de behandeling onder andere uit 4

weken dexamethason en daarna 4 giften L-Asparaginase in 2 weken, terwijl in de

intensificatie steeds 1 week dexamethason per 3 weken wordt gecombineerd met

negen wekelijkse giften L-Asparaginase. De stollingswaarden veranderden aanzienlijk

in de inductie zoals beschreven in hoofdstuk 6. Echter tijdens de intensificatie

veranderden de stollingsuitslagen niet noemenswaardig. Er was tijdens de fase van

intensificatie, gelet op de stollingsparameters, geen verhoogd risico op trombose.

Het effect van gelijktijdige behandeling van corticosteroïden en L-Asparaginase op de

stolling is dus afhankelijk van het precieze toedieningschema van deze combinatie.

DEEL III

Conclusie

We kunnen stellen dat L-Asparaginase steeds belangrijker wordt in de behandeling

van ALL bij kinderen. Intensief gebruik is van groot belang voor een maximale

overlevingskans van kinderen met ALL. De balans tussen maximale effectiviteit en

minimale toxiciteit verdient veel aandacht. In hoofdstuk 8 analyseren we in een

algemene discussie alle verkregen data in relatie tot beschikbare kennis uit de

literatuur. Hieruit volgen een aantal aanbevelingen voor de toekomst, zoals het

meten van de L-Asparaginase-activiteit om op individuele basis de dosering aan te

passen om een algehele asparaginedepletie te bewerkstelligen. De klinische respons

op L-Asparaginase voorspelt de overlevingskans en kan in de toekomst gebruikt

worden in de keus voor bepaalde behandelstrategieën. Studies zullen moeten

uitwijzen of het gebruik van bloedverdunners bij oudere kinderen leidt tot minder

tromboses tijdens de inductiebehandeling van ALL.
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Jarenlang had ik al actief en met veel plezier in de kinderoncologie gewerkt in het

academische milieu van het Sophia Kinderziekenhuis, toen moest het er toch nog

van komen:

Rob Pieters werd tot hoogleraar kinderoncologie in het Sophia Kinderziekenhuis

benoemd met in zijn kielzog een groep jonge enthousiaste nieuwe

kinderoncologen! Dit moest voor mij het moment worden om ruim baan te maken

voor aanstormend talent. Ik stelde voor om de zorg van de benigne hematologie

en de hemostase op mij te nemen, en op mijn vraag of ik dat niet zou kunnen

combineren met enig onderzoek, sprak Rob:

"dan moet je ook promoveren…"

Maar voordien waren daar eerst Dr. George van Zanen en zeker ook Dr. Karel

Hählen. De liefde voor kinderen met een ernstige ziekte zoals kanker en het

zorgvuldig toepassen van protocollaire geneeskunde heb ik van hen geleerd.

Met Prof. Dr. Rob Pieters als promotor werd ik rustig maar nadrukkelijk

geïntroduceerd in de wereld van wetenschappelijk denken. Logisch redeneren en

precies formuleren bleken niet eenvoudig. Gelukkig heb jij de onderzoekslijnen

helder voor de geest, waardoor de positie van de kinderoncologie in Rotterdam op

een zeer hoog plan is getild. Ik voel me vereerd dat ik met dit proefschrift een

klein steentje heb kunnen bijdragen.

Natuurlijk ben je als clinicus èn aio èn 50-plusser een vreemde eend in de bijt.

Vooral het net geïnstalleerde research-laboratorium op de 15e moest hier even aan

wennen! Het is prima gegaan. Dr. Monique den Boer, hoofd van het research-

laboratorium kinderoncologie, wees mij de meest geroutineerde analistes toe en

hield zelf de touwtjes van het onderzoek strak in handen. Als geen ander ben jij,

Monique, in staat geweest om de onderzoeksresultaten en de voor mij zo lastige

statistiek in goed Engels te formuleren. Dank voor alle aandacht die je hieraan

hebt besteed.

De overige leden van de kleine commissie naast Rob Pieters en Monique den

Boer, Prof. dr. Pieter Sonneveld, Prof. dr. Huib Pols en Dr. Frank Leebeek wil ik

bedanken voor hun bereidheid het manuscript op snelle wijze kritisch te

beoordelen.

Het echte werk is gedaan aan de bench: Nathalie Reniers beet het spits af en

leerde mij niet alleen de beginselen van de moleculaire biologie, maar ook vele

finesses van de computer. Hoewel je uit Rotterdam bent vertrokken, zien we

elkaar gelukkig nog steeds. Karin Kazemier mocht het werk afmaken. Ongelooflijk

dat iemand zoveel dingen tegelijk kon doen. Altijd drie stappen verder met je

gedachtes dan ik, maar ook altijd even behulpzaam in weer recapituleren.

Beneden op het laboratorium speciële hematologie werd ondertussen minstens

zo hard gewerkt. Rolinda Stigter en Carla van Kessel hebben tussen de bedrijven

door met een voor analistes kenmerkende precisie alle stollingstesten uitgevoerd.

Nog steeds voeren we zeer verhelderende discussies over de interpretatie van

technieken en hun uitkomsten.
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Met al die stollingsuitslagen ging ik naar Wim Hop, de statisticus. Uren zaten we

samen in dat kleine kamertje aan de kop van de faculteit (dus een prachtig

uitzicht). Het belang van ANOVA en SAS PROC MIXED is goed tot mij

doorgedrongen!

Als derde laboratorium dat participeerde in dit onderzoek noem ik het

laboratorium van de Klinische Genetica (sectie Chemische Basisdiagnostiek -

Metabole) waar Wistaria onder leiding van Dr. Jan Huijmans alle intracellulaire

aminozuurmetingen heeft uitgevoerd: onverstoorbaar, en altijd even vriendelijk.

Vòòr meten komt een goed protocol schrijven, patiënten en ouders inlichten en

vooral materiaal voor laboratorium onderzoek verzamelen: wie konden dat beter

coördineren en uitvoeren dan Eline Visser en Inekee van der Vaart. Eigenlijk zijn

zij de motor van ons research instituut. Geweldig dat ook ik van jullie diensten

gebruik heb mogen maken.

Altijd even behulpzaam waren ook Jeanine Arnolds en Jacqueline Dito van ons

secretariaat. 'Even' helpen bijvoorbeeld met elektronisch een artikel "submitten":

alles wil geleerd zijn.

De 'finishing touch' is gebeurd door Margo Terlouw, een oude bekende van het

specieel hematologisch laboratorium waar zij vroeger als analiste werkte. De

precisie van toen komt nu fantastisch van pas bij het redigeren van proefschriften.

Geweldig bedankt voor je leuke ideeën en je vlotte uitwerking.

Dank voor de samenwerking met de SKION, waardoor de window met PEG-

Asparaginase in de behandelstrategie van ALL-9 kon worden opgenomen.

Het laboratorium van Prof. dr. Joachim Boos en Dr. Claudia Lanvers in Münster

was vooral in het begin nauw betrokken bij zowel de planning van de PEG-

Asparaginase window, als ook bij de technische uitvoering: 'Ich bedanke mich für

die schöne Zusammenarbeit mit Ihnen'.

Wetenschappelijk leren denken is eigenlijk het belangrijkste doel van onderzoek

doen. Dr. Jules Meijerink vind ik zo'n echte wetenschapper. Erg kritisch, maar ook

zeer fair. Dank voor je geduld en begrip in menig gesprek over jou passie: de

wetenschap.

Wetenschap kost tijd, erg veel tijd zelfs. Toch heb ik een groot deel van het

onderzoek in werktijd kunnen doen, mede dankzij o.a. Auke Beishuizen en later

Marjon Cnossen. De hematologie moest wel doordraaien: zij deden de poli's en

consulten, ik hoefde alleen maar mee te denken. Ook Desirée Bezemer, Andrieca

de Vries en Inge van der Sluis droegen hun steentje bij tijdens hun stage

hematologie binnen hun fellowship kinderoncologie. Alle kinderoncologen toonden

zeer warme belangstelling. Vooral kamergenote Friederieke Hakvoort heeft het

misschien moeten ontgelden wanneer er weer iets mis ging met bijvoorbeeld de

computer, op de valreep mijn excuses. Het ga jullie goed in Italië!

Al die andere collegae en lieve mensen van de laboratoria, de polikliniek, de

afdelingen moeten zich realiseren dat het schrijven van een proefschrift deels een

eenzame exercitie is, maar het kan nooit zonder teamwerk. De afdeling

kinderoncologie/hematologie van het Sophia Kinderziekenhuis is een prachtig
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team; ik ben er trots op al zolang lid van dit team te zijn en ben trouwens niet van

plan weg te gaan!

En tenslotte de allerbelangrijkste groep: ik wil nadrukkelijk de ouders en hun

kinderen bedanken die ermee akkoord gingen om deel te nemen aan het

onderzoek. De zorgen rond de behandeling van een kind met leukemie zijn enorm,

toch konden en kunnen ouders en kinderen in die moeilijke fase het opbrengen om

in wetenschappelijk onderzoek te participeren. Hopelijk kunnen andere kinderen

van de resultaten van dit onderzoek profiteren.

Het thuisfront heeft waarschijnlijk bij het afronden van het boekje toch wel wat te

lijden gehad. Lieve Rolf, nog even en we hebben het rijk alleen! Alle kinders prima

geparkeerd, daar kunnen we trots op zijn. Er komt steeds meer tijd voor ons

samen. Hans, Frank en Carolien zijn allen volwassen met eigen toekomstplannen.

Ik geniet van jullie.

Het grootste probleem van het afgelopen jaar was mijn tuin: serieus verwaarloosd!

Dat is het eerstvolgende project na de promotie.

Inge Appel






