327 research outputs found
Substrate quality and the temperature sensitivity of soil organic matter decomposition
Copyright © 2008 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Soil Biology and Biochemistry, 2008, Vol. 40, Issue 7, pp. 1567 – 1574 http://dx.doi.org/10.1016/j.soilbio.2008.01.007Determining the relative temperature sensitivities of the decomposition of the different soil organic matter (SOM) pools is critical for predicting the long-term impacts of climate change on soil carbon (C) storage. Although kinetic theory suggests that the temperature sensitivity of SOM decomposition should increase with substrate recalcitrance, there remains little empirical evidence to support this hypothesis. In the study presented here, sub-samples from a single bulk soil sample were frozen and sequentially defrosted to produce samples of the same soil that had been incubated for different lengths of time, up to a maximum of 124 days. These samples were then placed into an incubation system which allowed CO2 production to be monitored constantly and the response of soil respiration to short-term temperature manipulations to be investigated. The temperature sensitivity of soil CO2 production increased significantly with incubation time suggesting that, as the most labile SOM pool was depleted the temperature sensitivity of SOM decomposition increased. This study is therefore one of the first to provide empirical support for kinetic theory. Further, using a modelling approach, we demonstrate that it is the temperature sensitivity of the decomposition of the more recalcitrant SOM pools that will determine long-term soil-C losses. Therefore, the magnitude of the positive feedback to global warming may have been underestimated in previous modelling studies
COMBINED USE OF OPEN-AIR AND INDOOR FUMIGATION SYSTEMS TO STUDY EFFECTS OF SO-2 ON LEACHING PROCESSES IN SCOTS PINE LITTER
Both an open-air fumigation system and a laboratory-based system were used to expose decomposing Scots pine (Pinus sylvestris L.) needles to controlled concentrations of SO2 (arithmetric mean less-than-or-equal-to 48 nl litre-1) during a period, in total, of 301 days. The experimental design involved reciprocal litter transplants from 'clean' to 'polluted' air and vice versa, using the two fumigation systems. The objectives were (1) to observe the effects of SO2 on leachate and litter chemistry, (2) to assess whether pollution-induced changes are reversible in clean air, and (3) to test the suitability of small-scale fumigation chambers (litter microcosms) compared with open-air systems in soil studies.Through the formation of SO4(2-) ions, dry-deposited SO2 exhibited a marked capacity to remove 'base' cations (Ca2+, Mg2+ and K+) from decomposing pine needles, and also to acidify litter leachates (as indicated by proton fluxes from the litter). When litter was transferred from polluted air (48 nl litre-1 SO2, in the open-air system) to either clean or polluted air in the laboratory, the effects of prior exposure to SO2 on leachate composition were still evident even after 86 days: the role of base cation depletion within the litter, caused by SO42- -induced leaching, is discussed.Data for SO42- fluxes in leachates collected from the small-scale chambers indicated that dry deposition velocities for SO2 were not anomalously high within this fumigation system. It is therefore concluded that microcosm studies can provide information complementary to the open-air fumigation approach in soils research.</p
Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14
Processes in the soil remain among the least well-characterized components of the carbon cycle. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts in many terrestrial ecosystems and account for a large fraction of photosynthate in a wide range of ecosystems; they therefore play a key role in the terrestrial carbon cycle. A large part of the fungal mycelium is outside the root ( the extraradical mycelium, ERM) and, because of the dispersed growth pattern and the small diameter of the hyphae (<5 micrometers), exceptionally difficult to study quantitatively. Critically, the longevity of these. ne hyphae has never been measured, although it is assumed to be short. To quantify carbon turnover in these hyphae, we exposed mycorrhizal plants to fossil ("carbon-14 - dead") carbon dioxide and collected samples of ERM hyphae ( up to 116 micrograms) over the following 29 days. Analyses of their carbon-14 content by accelerator mass spectrometry (AMS) showed that most ERM hyphae of AM fungi live, on average, 5 to 6 days. This high turnover rate reveals a large and rapid mycorrhizal pathway of carbon in the soil carbon cycle
Evaluating the carbon balance estimate from an automated ground-level flux chamber system in artificial grass mesocosms
Measuring and modeling carbon (C) stock changes in terrestrial ecosystems are pivotal in addressing global C-cycling model uncertainties. Difficulties in detecting small short-term changes in relatively large C stocks require the development of robust sensitive flux measurement techniques. Net ecosystem exchange (NEE) ground-level chambers are increasingly used to assess C dynamics in low vegetation ecosystems but, to date, have lacked formal rigorous field validation against measured C stock changes. We developed and deployed an automated and multiplexed C-flux chamber system in grassland mesocosms in order rigorously to compare ecosystem total C budget obtained using hourly C-flux measurements versus destructive net C balance. The system combines transparent NEE and opaque respiration chambers enabling partitioning of photosynthetic and respiratory fluxes. The C-balance comparison showed good agreement between the two methods, but only after NEE fluxes were corrected for light reductions due to chamber presence. The dark chamber fluxes allowed assessing temperature sensitivity of ecosystem respiration (Reco) components (i.e., heterotrophic vs. autotrophic) at different growth stages. We propose that such automated flux chamber systems can provide an accurate C balance, also enabling pivotal partitioning of the different C-flux components (e.g., photosynthesis and respiration) suitable for model evaluation and developments
Deconstructing ‘good practice’ teaching videos: An analysis of pre-service teachers’ reflections
Video clips of mathematics lessons are used extensively in pre-service teacher education and continuing professional development activities. Given course time constraints, an opportunity to critique these videos is not always possible. Because of this, and because pre-service teachers make extensive use of material found during internet searches, much of it purporting to exemplify ‘good’ practice, we were interested to know what sense they make of such material. By encouraging pre-service teachers to reflect and comment on the practices being promoted in this way, we wanted to hear what they focused on, their initial views of the teaching and learning shown in the video, and how their views were formed and affected by engaging in discussion. Findings indicate that pre-service teachers’ responses to the material were dominated by their beliefs about mathematics, and that engaging in discussion enabled them to appreciate the interpretations of others
Carbon Dioxide and Methane Flux Response and Recovery From Drought in a Hemiboreal Ombrotrophic Fen
Globally peatlands store 500 Gt carbon (C), with northern blanket bogs accumulating 23 g C m−2 y−1 due to cool wet conditions. As a sink of carbon dioxide (CO2) peat bogs slow anthropogenic climate change, but warming climate increases the likelihood of drought which may reduce net ecosystem exchange (NEE) and increase soil respiration, tipping C sinks to sources. High water tables make bogs a globally important source of methane (CH4), another greenhouse gas (GHG) with a global warming potential (GWP) 34 times that of CO2. Warming may increase CH4 emissions, but drying may cause a reduction. Predicted species composition changes may also influence GHG balance, due to different traits such as erenchyma, e.g., Eriophorum vaginatum (eriophorum) and non-aerenchymatous species, e.g., Calluna vulgaris (heather). To understand how these ecosystems will respond to climate change, it is vital to measure GHG responses to drought at the species level. An automated chamber system, SkyLine2D, measured NEE and CH4 fluxes near-continuously from an ombrotrophic fen from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, hypothesizing that fluxes would significantly differ between ecotypes. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year. Methane emissions differed between ecotypes (p sphagnum > water > heather, ranging from 23 to 8 mg CH4-C m−2 d−1. Daily NEE was similar between ecotypes (p > 0.7), but under 2018 drought conditions all ecotypes were greater sources of CO2 compared to 2019, losing 1.14 g and 0.24 g CO2-C m−2 d−1 respectively (p < 0.001). CH4 emissions were ca. 40% higher during 2018 than 2019, 17 mg compared to 12 mg CH4-C m−2 d−1 (p < 0.0001), and fluxes exhibited hysteresis with water table depth. A lag of 84–88 days was observed between rising water table and increased CH4 emissions. A significant interaction between ecotype and year showed fluxes from open water did not return to pre-drought levels. Our findings suggest that short-term drought may lead to a net increase in C emissions from northern wetlands
The link between accretion mode and environment in radio-loud active galaxies
The interactions between radio-loud AGN and their environments play an important rôle in galaxy and cluster evolution. Recent work has demonstrated fundamental differences between high- and low-excitation radio galaxies (HERGs and LERGs), and shown that they may have different relationships with their environments. In the Chandra Large Project ERA (Environments of Radio-loud AGN), we made the first systematic X-ray environmental study of the cluster environments of radio galaxies at a single epoch (z ~ 0.5), and found tentative evidence for a correlation between radio luminosity and cluster X-ray luminosity. We also found that this relationship appeared to be driven by the LERG subpopulation. We have now repeated the analysis with a low-redshift sample (z ~ 0.1), and found strong correlations between radio luminosity and environment richness and between radio luminosity and central density for the LERGs but not for the HERGs. These results are consistent with models in which the HERGs are fuelled from accretion discs maintained from local reservoirs of gas, while LERGs are fuelled more directly by gas ingested from the intracluster medium. Comparing the samples, we found that although the maximum environment richness of the HERG environments is similar in both samples, there are poorer HERG environments in the z ~ 0.1 sample than in the z ~ 0.5 sample. We have therefore tentative evidence of evolution of the HERG environments. We found no differences between the LERG subsamples for the two epochs, as would be expected if radio and cluster luminosities are related.Peer reviewedFinal Accepted Versio
Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A
This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. 21 pages, 8 figuresWe present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of nJy and nJy, and photon indices of and respectively. For the western lobe and jet, we find flux densities of nJy and nJy, and photon indices of and respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.Peer reviewedFinal Published versio
- …