303 research outputs found

    Fatigue of titanium alloys in a supersonic-cruise airplane environment

    Get PDF
    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location

    Crack growth in Ti-8Al-1Mo-1V with real-time and accelerated flight by flight loading

    Get PDF
    Crack growth in Ti-8Al-lMo-lV was measured and calculated for real time and accelerated simulations of supersonic airplane loading and heating. Crack-growth rates calculated on the assumption that an entire flight could be represented by a single cycle predicted the experimental rates poorly. Calculated crack growth rates were slower than the experimental rates for all tests with flight-by-flight loading. For room temperature accelerated tests, the calculated rates agreed well with the experimental rates; but the calculations became progressively less accurate for progressively more complex test conditions (tests that included elevated temperature)

    Fatigue testing device

    Get PDF
    Anti-buckling assembly prevents buckling of sheet metal fatigue specimen when axial compressive load is applied. It provides for cyclic heating and cooling of specimen during testing. Assembly permits tests at two locations on specimen. Device has ports for visual, optical, or photographic monitoring of fatigue crack propagation in test specimen

    Heating and cooling system

    Get PDF
    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes

    Anti-buckling fatigue test assembly

    Get PDF
    An antibuckling fatigue test assembly is described for holding a metal specimen which is subjected to compression and to rapid cyclical heating and cooling while permitting visual observation. In an illustrative embodiment of this invention, the anti-buckling fatigue test apparatus includes first and second guide members between which the metal specimen is disposed and held, a heating assembly comprising a suitable heating source such as a quartz lamp and a reflecting assembly directing the heat onto the specimen, and a cooling assembly for directing a suitable cooling fluid such as air onto the specimen. The guide members each have a passage to permit the heat to be directed onto the specimen. An opening is provided in the reflecting assembly to permit visual inspection of that region of the specimen adjacent to the opening onto which the heat is directed

    Fatigue failure load indicator

    Get PDF
    An indicator for recording the load at which a fatigue specimen breaks during the last cycle of a fatigue test is described. A load cell is attached to the specimen which is alternately subjected to tension and compression loads. The output of the load cell which is proportional to the load on the specimen is applied to the input of a peak detector. Each time the specimen is subjected to a compression load, means are provided for applying a positive voltage to the rest of the peak detector to reset it. During the last cycle of the tension load the peak detector measures the maximum load on the specimen. Means are provided for disconnecting the load cell from the peak detector when there is a failure in the specimen

    Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells

    Get PDF
    The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity

    Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

    Get PDF
    © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Progress in olfactory research is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli in the dorsal olfactory bulb (dOB) innervated by the MOR18-2 olfactory receptor, also known as Olfr78, with human ortholog OR51E2. Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We found that a combination of conventional physico-chemical and vibrational molecular descriptors performed best in predicting glomerular responses using nonlinear Support-Vector Regression. We also discovered several previously unknown odorants activating MOR18-2 glomeruli, and obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Our results confirm earlier findings that demonstrated tunotopy, that is, glomeruli with similar tuning curves tend to be located in spatial proximity in the dOB. In addition, our results indicate chemotopy, that is, a preference for glomeruli with similar physico-chemical MRR descriptions being located in spatial proximity. Together, these findings suggest the existence of a partial chemical map underlying glomerular arrangement in the dOB. Our methodology that combines machine learning and physiological measurements lights the way towards future high-throughput studies to deorphanise and characterise structure-activity relationships in olfaction.Peer reviewe

    Variation in the human soluble epoxide hydrolase gene and risk of restenosis after percutaneous coronary intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restenosis represents the major limiting factor for the long-term efficacy of percutaneous coronary intervention (PCI). Several genetic factors involved in the regulation of the vascular system have been described to play a role in the pathogenesis of restenosis. We investigated whether the <it>EPHX2 K55R </it>polymorphism, previously linked to significantly higher risk for coronary heart disease (CHD), was associated with the occurrence of restenosis after PCI. The association with incident CHD should have been confirmed and a potential correlation of the <it>EPHX2 K55R </it>variant to an increased risk of hypertension was analysed.</p> <p>Methods</p> <p>An overall cohort of 706 patients was studied: This cohort comprised of 435 CHD patients who had undergone successful PCI. Follow-up coronary angiography in all patients was performed 6 months after intervention. Another 271 patients in whom CHD had been excluded by coronary angiography served as controls. From each patient EDTA-blood was drawn at the baseline ward round. Genomic DNA was extracted from these samples and genotyping was performed by real-time PCR and subsequent melting curve analysis.</p> <p>Results</p> <p>In CHD patients 6 month follow-up coronary angiography revealed a restenosis rate of 29.4%, classified as late lumen loss as well as lumen re-narrowing ≥ 50%.</p> <p>Statistical analysis showed an equal genotype distribution in restenosis patients and non-restenosis patients (A/A 82.0% and A/G + G/G 18.0% versus A/A 82.1% and A/G + G/G 17.9%). Moreover, neither a significant difference in the genotype distribution of CHD patients and controls nor an association with increased risk of hypertension was found.</p> <p>Conclusion</p> <p>The results of the present study indicate that the <it>EPHX2 K55R </it>polymorphism is not associated with restenosis after PCI, with incidence of CHD, or with an increased risk of hypertension and therefore, can not serve as a predictor for risk of CHD or restenosis after PCI.</p

    A Tale of Two Disks: Mapping the Milky Way with the Final Data Release of APOGEE

    Full text link
    We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]), α\alpha-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-α\alpha disk, high-α\alpha disk, and total population independently. The low-α\alpha disk exhibits a negative radial metallicity gradient of 0.06±0.001-0.06 \pm 0.001 dex kpc1^{-1}, which flattens with distance from the midplane. The high-α\alpha disk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]-[Fe/H] plane and in the [Mg/Fe]-age relation persist across the entire disk. The age estimates have typical uncertainties of 0.15\sim0.15 in log\log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.Comment: 41 pages, 32 figures, accepted to Ap
    corecore