42 research outputs found

    Modulación de la transducción de la señal asociada a receptores tirosina quinasa por el fragmento c-terminal de la toxina tetánica en tejido nervioso

    Get PDF
    Consultable des del TDXTítol obtingut de la portada digitalitzadaLas neurotoxinas clostridiales (CNTs) producen patologías graves como el tétanos y el botulismo. En ambas patologías la muerte se produce en un porcentaje elevado y generalmente por colapso respiratorio y asfixia. Esta capacidad de causar la muerte en organismos superiores es responsabilidad de la actividad metaloproteásica dependiente de zinc que tienen estas toxinas en el dominio catalítico. Sin embargo, además de la actividad metaloproteásica también se han descubierto otras acciones farmacológicas de las neurotoxinas. Las neurotoxinas son estructuras proteicas complejas que han adquirido la capacidad de actuar en distintos sistemas a través de diferentes mecanismos de acción, como son el bloqueo de la captación de algunos neurotransmisores o bien de algunos de sus precursores. Asimismo, La toxina tetánica (TeTx) sintetizada por Cl.tetani, además de producir parálisis espástica, tiene otros efectos sobre diversos enzimas, no explicables por esta acción proteásica. En la presente tesis se describe la activación de vías de señalización en tejido nervioso por toxina tetánica (TeTx) como por su dominio C-terminal de 50 kDa de la cadena pesada (Hc). Estas vías de señalización incluyen la fosforilación del receptor TrkA y de la fosfolipasa C-1 (PLC-1), la translocación de las isoformas clásicas y nuevas de la proteína cinasa C (PKC) y la fosforilación de cinasas reguladas por señales extracelulares (ERK-1/2) en sinaptosomas de encéfalo de rata (Trabajo, 1). Experimentos similares en cultivos primarios de neuronas corticales demuestran la activación de las vías Akt y ERK1/2 (Trabajo, 2). Se presentan también trabajos que apuntan hacia una neuroprotección ejercida por el fragmento NO TÓXICO Hc frente a la muerte apoptótica de las neuronas granulares de cerebelo (CGN) en concetraciones bajas de potasio. Creemos que esta neuroprotección puede ser debida a la interacción del fragmento Hc con el receptor TrkB, receptor del factor de crecimiento BDNF, produciendo la activación de al menos tres vía de señalización: fosfatidilinositol-3-quinasa (PI-3K)/proteína quinasa B, Ras/ERK and PLC/PKC, tal como lo hace el BDNF. También caracterizamos la acción de bloqueo de la caspasa-3 en los mecanismos de protección celular (Trabajo, 3). Por último, y en el mismo modelo anteriormente mencionado, CGN, demostramos también el efecto neuroprotector del fragmento Hc-TeTx frente a la muerte apoptótica inducida por el MPP+, disminuyendo la muerte celular y la condensación de cromatina. En el proceso apoptótico inducido por el MPP+ se produce la translocación de Bax de la fracción citosólica a la fracción mitocondrial, la liberación de citocromo c en el citoplasma así como la activación de la pro-caspasa-3. Este proceso apoptótico es inhibido por el fragmento Hc-TeTx (Trabajo, 4). El conjunto de estos trabajos apunta a que el fragmento Hc-TeTx podría utilizarse como una neurotrofina (NGF, BDNF, NT/3,..) y producir acciones anti-apoptóticas terapéuticamente dirigidas.The clostridial neurotoxins (CNTs) produce serious pathologies like the tetanus and the botulism. In both pathologies the death takes place in a high percentage and generally by respiratory collapse and asphyxia. This capacity to cause the death in superior organisms is responsibility of the dependent zinc metaloproteásica activity that has these toxins in the catalytic domain. Nevertheless, in addition to the metaloproteásica activity also other pharmacological actions of the neurotoxins have been described. The neurotoxins are complex protein structures that have acquired the ability to act in different systems through different mechanisms from action, as they are the inhibition of release of some neurotransmitters or of some of his precursors. Also, the tetanus toxin (TeTx) synthesized by Cl.tetani, besides to produce spastic paralysis, has other effects on diverse enzymes, no explicable by this protease action. In the present thesis, we described the activation of several signalling pathways in nervous system by both tetanus toxin (TeTx) and its atoxic 50-kDa C-terminal domain of the heavy chain (Hc). These pathways include phosphorylation of TrkA receptor and phospholipase C 1 (PLC 1), translocation of classical and novel protein kinase C (PKC) isoforms and phosphorylation of the extracellular signal-regulated kinases (ERK 1/2) in rat brain synaptosomes (Work, 1). Similar experiments in primary cultures of cortical neurons demonstrate the activation of Akt and ERK1/2 pathways (Work, 2). Works also appear that aim towards the neuroprotection due to the NON-TOXIC Hc fragment against the apoptotic death of the cerebellar granule neurons (CGN) in low potassium concentration. We propose that this neuroprotection could be, in part, due to the interaction of Hc with the TrkB receptor, receptor of the endogenous neurotrophic factor BDNF, leading to the activation of at least three major signalling pathways: phosphatidylinositol 3 kinase (PI 3K)/protein kinase B, Ras/ERK and PLC/PKC, as BDNF does. We also characterized the blocking action of Hc on caspases in the mechanims of cell protection (Work, 3). Finally, and in the same model previously mentioned, CGN, we also demonstrated the neuroprotective effect of the Hc-TeTx fragment against the apoptotic death induced by the MPP+, diminishing the cellular death and the chromatin condensation. In the apoptotic process induced by the MPP+ the translocation of Bax of the citosolic to the mitochondrial fraction; the cytochrome c release in the cytoplasm takes place as well as the activation of the pro-caspasa-3. This apoptotic process is inhibited by the Hc-TeTx fragment (Work, 4). These results aims at that the Hc-TeTx fragment could be used like a neurotrophin (NGF, BDNF, NT/3..) and produce anti-apoptotic actions therapeutically directed

    Design of a specialized search engine for university students dedicated to education and environment

    Get PDF
    The aim of this study is to introduce a new specialized search engine that helps university students learn about environmental issues and improve their environmental literacy. Our search engine collects information from environmental documents and scientific articles from trusted sources. After intensive word processing, it provides a list of different contexts for the terms queried, depending on the chosen field, allowing students to refine their online search. In a single operation, students can find phrases and paragraphs using multiple related terms. This model aims to generate maximum output with semantic value using minimum user input, thanks to the new search mechanism on which it is based. The search engine is optimized for environmental education, allowing students to access environmental information in their preferred language. Our work is structured as follows: first, we motivate the need for a specialized environmental education search engine. Then, we discuss the context and construction of our specialized search engine for environmental education. Finally, we review the proposed solution and conclude with future work

    Hsp90 inhibitors enhance the antitumoral effect of osimertinib in parental and osimertinib-resistant non-small cell lung cancer cell lines

    Get PDF
    Background: Osimertinib improve therapy for non-small cell lung cancer (NSCLC). However, invariable acquired resistance appears. Methods: MTT assay was used to analyze cell viability. Protein expression and activation was detected by Western blotting. In addition, the effects of heat shock protein 90 (Hsp90) inhibitors and osimertinib were studied in colony formation assays. Results: Our laboratory generated osimertinib resistant cell lines from PC9 cell line and overexpression or activation of several proteins was detected. Hsp90 inhibitors, ganetespib and luminespib, inhibited cell viability and colony formation in H1975, PC9 and PC9-derived osimertinib-resistant cell lines and combination of these inhibitors with osimertinib achieved to enhance this cell viability and colony formation inhibition. Luminespib downregulated the expression of the several proteins involved in osimertinib-resistance and the combination of this compound plus osimertinib caused an important decrease of expression of several of these proteins, such as Stat3, Yap, Akt, EGFR and Met. Osimertinib activated the phosphorylation of several membrane receptors and downstream molecules that was partially inhibited by luminespib. In addition, a lung cancer patient with an EGFR eon 20 mutation had a partial radiographic response to ganetespib. Conclusions: Hsp90 inhibitors and osimertinib exhibits a good efficiency to inhibit cell viability, colony formation and inhibits expression and activation of proteins involved in osimertinib-resistance and may represent an effective strategy for NSCLC with intrinsic resistance to osimertinib inhibition

    Molecular Bases for Combinatorial Treatment Strategies in Patients with KRAS Mutant Lung Adenocarcinoma and Squamous Cell Lung Carcinoma

    Get PDF
    Innovative therapeutic agents have significantly improved outcomes, with an acceptable safety profile, in a substantial proportion of non-small cell lung cancer (NSCLC) patients in whom the malignant phenotype of the disease is determined by oncogenic molecular alterations. However, the benefit seen with these treatment models has not translated well to NSCLCs with KRAS mutations or squamous cell histology. Although efforts have been made to develop precision medicine approaches, KRAS mutant NSCLC and lung squamous cell carcinoma (LSCC) continue to display resistance to therapy. Recently, based on the results of the Phase III SQUIRE trial, the EGFR monoclonal antibody necitumumab received FDA authorization in combination with cisplatin and gemcitabine for first line treatment of patients with metastatic LSCC. Among the molecular compounds tested in KRAS mutant NSCLC patients, the MEK inhibitor, selumentinib, combined with docetaxel in second line setting, determined a progression-free survival improvement, but no overall survival advantage. Better understanding is needed in regard to signaling pathways which cooperate to induce oncogene transformation in LSCC and KRAS mutant NSCLC and could determine intrinsic or acquired resistance to necitumumab and selumetinib. Greater understanding of such pathways will provide a molecular base upon which to improve the scant clinical benefit with these compounds

    Targeting PKC iota-PAK1 signaling pathways in EGFR and KRAS mutant adenocarcinoma and lung squamous cell carcinoma

    Get PDF
    Introduction: p21-activated kinase 1 (PAK1) stimulates growth and metastasis in non-small cell lung cancer (NSCLC). Protein kinase C iota (PKC iota) is an enzyme highly expressed in NSCLC, regulating PAK1 signaling. In the present study we explored whether the PKC iota-PAK1 signaling pathway approach can be an efficient target in different types of NSCLC cell and mouse models. Methods: The effect of IPA-3 (PAK1 inhibitor) plus auranofin (PKC iota inhibitor) combination was evaluated by cell viability assay, colony formation and western blotting assay, using three types of NSCLC cell lines: EGFR or KRAS mutant adenocarcinoma and squamous cell carcinoma with PAK1 amplification. In addition, for clinical availability, screening for new PAK1 inhibitors was carried out and the compound OTSSP167 was evaluated in combination with auranofin in cell and mice models. Results: The combination of IPA-3 or OTSSP167 plus auranofin showed high synergism for inhibiting cell viability and colony formation in three cell lines. Mechanistic characterization revealed that this drug combination abrogated expression and activation of membrane receptors and downstream signaling proteins crucial in lung cancer: EGFR, MET, PAK1, PKC iota, ERK1/2, AKT, YAP1 and mTOR. A nude mouse xenograft assay demonstrated that this drug combination strongly suppressed tumor volume compared with single drug treatment. Conclusions: Combination of IPA-3 or OTSSP167 and auranofin was highly synergistic in EGFR or KRAS mutant adenocarcinoma and squamous cell carcinoma cell lines and decreased tumor volume in mice models. It is of interest to further test the targeting of PKC iota-PAK1 signaling pathways in EGFR mutant, KRAS mutant and squamous NSCLC patients

    Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell Lung Cancer Associated With Poor Prognosis.

    Get PDF
    Epidermal growth factor receptor (EGFR)-mutation-positive non-smallcell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p=0.0407) and overall survival (hazard ratio of 2.23, p=0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing

    Src-Homology 2 Domain-Containing Phosphatase 2 in Resected EGFR Mutation-Positive Lung Adenocarcinoma

    Get PDF
    Funding: supported by a La Caixa Foundation grant and the Spanish Association Against Cancer (PROYE18012ROSE)EGFR mutation-positive lung adenocarcinoma (LUAD) displays impaired phosphorylation of ERK and Src-homology 2 domain-containing phosphatase 2 (SHP2) in comparison with EGFR wild-type LUADs. We hypothesize that SHP2 expression could be predictive in patients positive with resected EGFR mutation versus patients with EGFR wild-type LUAD. We examined resected LUAD cases from Japan and Spain. mRNA expression levels of AXL, MET, CDCP1, STAT3, YAP1, and SHP2 were analyzed by quantitative reverse transcriptase polymerase chain reaction. The activity of SHP2 inhibitors plus erlotinib were tested in EGFR -mutant cell lines and analyzed by cell viability assay, Western blot, and immunofluorescence. A total of 50 of 100 EGFR mutation-positive LUADs relapsed, among them, patients with higher SHP2 mRNA expression revealed shorter progression-free survival, in comparison with those having low SHP2 mRNA (hazard ratio: 1.83; 95% confidence interval: 1.05-3.23; p = 0.0329). However, SHP2 was not associated with prognosis in the remaining 167 patients with wild-type EGFR. In EGFR -mutant cell lines, the combination of SHP099 or RMC-4550 (SHP2 inhibitors) with erlotinib revealed synergism via abrogation of phosphorylated AKT (S473) and ERK1/2 (T202/Y204). Although erlotinib translocates phosphorylated SHP2 (Y542) into the nucleus, either RMC-4550 alone, or in combination with erlotinib, relocates SHP2 into the cytoplasm membrane, limiting AKT and ERK1/2 activation. Elevated SHP2 mRNA levels are associated with recurrence in resected EGFR mutation-positive LUADs, but not in EGFR wild-type. EGFR tyrosine kinase inhibitors can enhance SHP2 activation, hindering adjuvant therapy. SHP2 inhibitors could improve the benefit of adjuvant therapy in EGFR mutation-positive LUADs

    Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC

    Get PDF
    Background: The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant non–small cell lung cancer (NSCLC) is limited by adaptive activation of cell survival signals. We hypothesized that both signal transducer and activator of transcription 3 (STAT3) and Src-YES-associated protein 1 (YAP1) signaling are dually activated during EGFR TKI treatment to limit therapeutic response. Methods: We used MTT and clonogenic assays, immunoblotting, and quantitative polymerase chain reaction to evaluate the efficacy of EGFR TKI alone and in combination with STAT3 and Src inhibition in three EGFR-mutant NSCLC cell lines. The Chou-Talalay method was used for the quantitative determination of drug interaction. We examined tumor growth inhibition in one EGFR-mutant NSCLC xenograft model (n = 4 mice per group). STAT3 and YAP1 expression was evaluated in tumors from 119 EGFR-mutant NSCLC patients (64 in an initial cohort and 55 in a validation cohort) by quantitative polymerase chain reaction. Kaplan-Meier and Cox regression analyses were used to assess the correlation between survival and gene expression. All statistical tests were two-sided. Results: We discovered that lung cancer cells survive initial EGFR inhibitor treatment through activation of not only STAT3 but also Src-YAP1 signaling. Cotargeting EGFR, STAT3, and Src was synergistic in two EGFR-mutant NSCLC cell lines with a combination index of 0.59 (95% confidence interval [CI] = 0.54 to 0.63) for the PC-9 and 0.59 (95% CI = 0.54 to 0.63) for the H1975 cell line. High expression of STAT3 or YAP1 predicted worse progression-free survival (hazard ratio [HR] = 3.02, 95% CI = 1.54 to 5.93, P = .001, and HR = 2.57, 95% CI = 1.30 to 5.09, P = .007, respectively) in an initial cohort of 64 EGFR-mutant NSCLC patients treated with firstline EGFR TKIs. Similar results were observed in a validation cohort. Conclusions: Our study uncovers a coordinated signaling network centered on both STAT3 and Src-YAP signaling that limits targeted therapy response in lung cancer and identifies an unforeseen rational upfront polytherapy strategy to minimize residual disease and enhance clinical outcomes

    BIM and mTOR expression levels predict outcome to erlotinib in EGFR-mutant non-small-cell lung cancer

    Get PDF
    Altres ajuts: Fellowship Award of the International Association for the Study of Lung Cancer i grant of the Italian Association for Cancer Research (AIRC My First AIRC Grant n° 14282).Abstract.BIM is a proapoptotic protein that initiates apoptosis triggered by EGFR tyrosine kinase inhibitors (TKI). mTOR negatively regulates apoptosis and may influence response to EGFR TKI. We examined mRNA expression of BIM and MTOR in 57 patients with EGFR-mutant NSCLC from the EURTAC trial. Risk of mortality and disease progression was lower in patients with high BIM compared with low/intermediate BIM mRNA levels. Analysis of MTOR further divided patients with high BIM expression into two groups, with those having both high BIM and MTOR experiencing shorter overall and progression-free survival to erlotinib. Validation of our results was performed in an independent cohort of 19 patients with EGFR-mutant NSCLC treated with EGFR TKIs. In EGFR-mutant lung adenocarcinoma cell lines with high BIM expression, concomitant high mTOR expression increased IC50 of gefitinib for cell proliferation. We next sought to analyse the signalling pattern in cell lines with strong activation of mTOR and its substrate P-S6. We showed that mTOR and phosphodiesterase 4D (PDE4D) strongly correlate in resistant EGFR-mutant cancer cell lines. These data suggest that the combination of EGFR TKI with mTOR or PDE4 inhibitors could be adequate therapy for EGFR-mutant NSCLC patients with high pretreatment levels of BIM and mTOR

    BRCA1: A Novel Prognostic Factor in Resected Non-Small-Cell Lung Cancer

    Get PDF
    BACKGROUND: Although early-stage non-small-cell lung cancer (NSCLC) is considered a potentially curable disease following complete resection, patients have a wide spectrum of survival according to stage (IB, II, IIIA). Within each stage, gene expression profiles can identify patients with a higher risk of recurrence. We hypothesized that altered mRNA expression in nine genes could help to predict disease outcome: excision repair cross-complementing 1 (ERCC1), myeloid zinc finger 1 (MZF1) and Twist1 (which regulate N-cadherin expression), ribonucleotide reductase subunit M1 (RRM1), thioredoxin-1 (TRX1), tyrosyl-DNA phosphodiesterase (Tdp1), nuclear factor of activated T cells (NFAT), BRCA1, and the human homolog of yeast budding uninhibited by benzimidazole (BubR1). METHODOLOGY AND PRINCIPAL FINDINGS: We performed real-time quantitative polymerase chain reaction (RT-QPCR) in frozen lung cancer tissue specimens from 126 chemonaive NSCLC patients who had undergone surgical resection and evaluated the association between gene expression levels and survival. For validation, we used paraffin-embedded specimens from 58 other NSCLC patients. A strong inter-gene correlation was observed between expression levels of all genes except NFAT. A Cox proportional hazards model indicated that along with disease stage, BRCA1 mRNA expression significantly correlated with overall survival (hazard ratio [HR], 1.98 [95% confidence interval (CI), 1.11-6]; P = 0.02). In the independent cohort of 58 patients, BRCA1 mRNA expression also significantly correlated with survival (HR, 2.4 [95%CI, 1.01-5.92]; P = 0.04). CONCLUSIONS: Overexpression of BRCA1 mRNA was strongly associated with poor survival in NSCLC patients, and the validation of this finding in an independent data set further strengthened this association. Since BRCA1 mRNA expression has previously been linked to differential sensitivity to cisplatin and antimicrotubule drugs, BRCA1 mRNA expression may provide additional information for customizing adjuvant antimicrotubule-based chemotherapy, especially in stage IB, where the role of adjuvant chemotherapy has not been clearly demonstrated
    corecore