8 research outputs found

    Identification and characterization of oxidative degradation products of secoiridoids in virgin olive oil by innovative analytical techniques.

    Get PDF
    Lo scopo di questo lavoro di tesi ù la caratterizzazione dei prodotti di ossidazione di diversi fenoli idrofili contenuti nell’olio vergine d’oliva come idrossitirosolo, tirosolo e la forma dialdeidica dell’acido decarbossimetil elenolico legato all’idrossitirosolo, e la loro identificazione nel prodotto durante la conservazione. L’obiettivo della ricerca ù trovare degli indici analitici che possono essere usati sia come marker di “freschezza” dell’olio vergine di oliva sia nella valutazione della “shelf life” del prodotto stesso. Due sistemi di ossidazione sono stati usati per ossidare le molecole sopracitate: ossidazione enzimatica e ossidazione di Fenton. I prodotti di ossidazione sono stati identificati come chinoni, dimeri e acidi.The aim of this research is the characterization of the oxidation products of several hydrophilic phenols of virgin olive oil (VOO), such as hydroxytyrosol (3,4-DHPEA), tyrosol (p-HPEA) and dialdehydic form of decarboxymethyl elenolic acid linked to 3,4-DHPEA (3,4-DHPEA-EDA) and, their identification in the product during storage. This work is aimed at finding analytical indicators that can be used both as molecular markers of VOO “freshness” and for the evaluation of the shelf life of the product itself. Two oxidation systems were examined for the oxidation of p-HPEA, 3,4-DHPEA and 3,4-DHPEA-EDA: enzymatic oxidation and Fenton oxidation. Reaction products were identified as quinones, dimers, and acids

    Improvement of Olive Oil Mechanical Extraction: New Technologies, Process Efficiency, and Extra Virgin Olive Oil Quality

    Get PDF
    Most of the recent technological innovations applied to the mechanical oil extraction process are aimed at improving virgin olive oil quality and yield. Extra virgin olive oil (EVOO) quality is mainly based on the qualitative/quantitative composition of monounsaturated fatty acids, volatile and phenolic compounds that are strictly related to the health and sensory properties of the product, with particular attention given to the fraction of secoiridoid derivatives and C5 and C6 volatile compounds. The different levels of concentration of these compounds are due to some important variables: agronomic and technological. The chapter explains the recent approaches and innovations introduced in the oil extraction process to improve the working efficiency of the production system and to obtain high‐quality extra virgin olive oils

    Caveolae in Rabbit Ventricular Myocytes: Distribution and Dynamic Diminution after Cell Isolation

    Get PDF
    Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account

    Optimization of the Temperature and Oxygen Concentration Conditions in the Malaxation during the Oil Mechanical Extraction Process of Four Italian Olive Cultivars

    No full text
    Response surface modeling (RSM) was used to optimize temperature and oxygen concentration during malaxation for obtaining high quality extra virgin olive oils (EVOOs). With this aim, those chemical variables closely related to EVOO quality, such as the phenolic and the volatile compounds, have been previously analyzed and selected. It is widely known that the presence of these substances in EVOOs is highly dependent on genetic, agronomic, and technological aspects. Based on these data, the two parameters were optimized during malaxation of olive pastes of four important Italian cultivars using some phenols and volatile compounds as markers; the optimal temperatures and oxygen levels, obtained by RSM, were as follows for each cultivar: 33.5 °C and 54 kPa of oxygen (Peranzana), 32 °C and 21.3 kPa (Ogliarola), 25 °C and 21.3 kPa (Coratina), and 33 °C and 21.3 kPa (Itrana). These results indicate the necessity to optimize these malaxing parameters for other olive cultivars
    corecore