69 research outputs found

    Heat flow, seismic cutoff depth and thermal modeling of the Fennoscandian Shield

    Get PDF
    Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000–2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyze the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40–60 mWm−2). The one-dimensional geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9–15 mWm−2), upper crustal heat production values (3.3–1.1 ÎŒWm−3), and the brittle-ductile transition temperature (350 °C) assigned to the cutoff depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 ÎŒWm−3 were assigned, respectively. The models suggest a Moho temperature range of 460 to 500 °C.Being far from plate boundaries but covered with seismograph networks, the Fennoscandian Shield features an ideal test laboratory for studies of intraplate seismicity. For this purpose, this study applies 4190 earthquake events from years 2000–2015 with magnitudes ranging from 0.10 to 5.22 in Finnish and Swedish national catalogues. In addition, 223 heat flow determinations from both countries and their immediate vicinity were used to analyse the potential correlation of earthquake focal depths and the spatially interpolated heat flow field. Separate subset analyses were performed for five areas of notable seismic activity: the southern Gulf of Bothnia coast of Sweden (area 1), the northern Gulf of Bothnia coast of Sweden (area 2), the Swedish Norrbotten and western Finnish Lapland (area 3), the Kuusamo region of Finland (area 4) and the southernmost Sweden (area 5). In total, our subsets incorporated 3619 earthquake events. No obvious relation of heat flow and focal depth exists, implying that variations of heat flow are primarily caused by shallow lying heat producing units instead of deeper sources. This allows for construction of generic geotherms for the range of representative palaeoclimatically corrected (steady-state) surface heat flow values (40–60 mW m−2). The 1-D geotherms constructed for a three-layer crust and lithospheric upper mantle are based on mantle heat flow constrained with the aid of mantle xenolith thermobarometry (9–15 mW m−2), upper crustal heat production values (3.3–1.1 ÎŒWm−3) and the brittle-ductile transition temperature (350 °C) assigned to the cut-off depth of seismicity (28 ± 4 km). For the middle and lower crust heat production values of 0.6 and 0.2 ÎŒWm−3 were assigned, respectively. The models suggest a Moho temperature range of 460–500 °C.Peer reviewe

    Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics

    Get PDF
    Petrophysical studies (susceptibility, intensity of natural remanent magnetisation (NRM) and dry bulk density) of 368 meteorites are reviewed together with magnetic hysteresis data for 50 achondrites and chondrites. The relationships between dry bulk density, metallic FeNi-content and porosity will be discussed in the case of L-chondrites. Using the petrophysical classification scheme the meteorite class and the petrologic group of a sample can be determined in most of the cases providing a rapid means for determining a preliminary classification of a new sample. In addition, the petrophysical database provides a direct source of basic physical properties of the small bodies in the solar system. Paleointensity determinations with Thellier technique will be presented for 16 meteorites representing different chondrite groups. The results yield high paleofield values ranging from 51ÎŒT to 728ÎŒT for the magnetically hardest meteorites consistent with previous studies. However, these values must be looked with caution, because of possible physico-chemical or mineralogical alterations during heating

    Prospects for Assessing Enhanced Geothermal System (EGS) Basement Rock Flow Stimulation by Wellbore Temperature Data

    Get PDF
    We use Matlab 3D finite element fluid flow/transport modelling to simulate localized wellbore temperature events of order 0.05–0.1 °C logged in Fennoscandia basement rock at ~1.5 km depths. The temperature events are approximated as steady-state heat transport due to fluid draining from the crust into the wellbore via naturally occurring fracture-connectivity structures. Flow simulation is based on the empirics of spatially-correlated fracture-connectivity fluid flow widely attested by well-log, well-core, and well-production data. Matching model wellbore-centric radial temperature profiles to a 2D analytic expression for steady-state radial heat transport with Peclet number Pe ≡ r0φv0/D (r0 = wellbore radius, v0 = Darcy velocity at r0, φ = ambient porosity, D = rock-water thermal diffusivity), gives Pe ~ 10–15 for fracture-connectivity flow intersecting the well, and Pe ~ 0 for ambient crust. Darcy flow for model Pe ~ 10 at radius ~10 m from the wellbore gives permeability estimate Îș ~ 0.02 Darcy for flow driven by differential fluid pressure between least principal crustal stress pore pressure and hydrostatic wellbore pressure. Model temperature event flow permeability Îșm ~ 0.02 Darcy is related to well-core ambient permeability Îș ~ 1 ”Darcy by empirical poroperm relation Îșm ~ Îș exp(αmφ) for φ ~ 0.01 and αm ~ 1000. Our modelling of OTN1 wellbore temperature events helps assess the prospect of reactivating fossilized fracture-connectivity flow for EGS permeability stimulation of basement rock.Peer reviewe

    Predicting Missing Seismic Velocity Values Using Self-Organizing Maps to Aid the Interpretation of Seismic Reflection Data from the Kevitsa Ni-Cu-PGE Deposit in Northern Finland

    Get PDF
    We use self-organizing map (SOM) analysis to predict missing seismic velocity values from other available borehole data. The site of this study is the Kevitsa Ni-Cu-PGE deposit within the mafic-ultramafic Kevitsa intrusion in northern Finland. The site has been the target of extensive seismic reflection surveys, which have revealed a series of reflections beneath the Kevitsa resource area. The interpretation of these reflections has been complicated by disparate borehole data, particularly because of the scarce amount of available sonic borehole logs and the varying practices in logging of borehole lithologies. SOM is an unsupervised data mining method based on vector quantization. In this study, SOM is used to predict missing seismic velocities from other geophysical, geochemical, geological, and geotechnical data. For test boreholes, for which measured seismic velocity logs are also available, the correlation between actual measured and predicted velocities is strong to moderate, depending on the parameters included in the SOM analysis. Predicted reflectivity logs, based on measured densities and predicted velocities, show that some contacts between olivine pyroxenite/olivine websterite-dominant host rocks of the Kevitsa disseminated sulfide mineralization—and metaperidotite—earlier extensively used “lithology” label that essentially describes various degrees of alteration of different olivine pyroxenite variants—are reflective, and thus, alteration can potentially cause reflectivity within the Kevitsa intrusion

    Radiogenic heat production analysis of Fennoscandian Shield and adjacent areas in Sweden

    Get PDF
    In northern Europe, radiogenic heat production of surface rocks has been extensively studied in Finland and Norway alike. This paper presents a heat production analysis of Sweden, based on a rock outcrop data compilation obtained from the Geological Survey of Sweden (SGU). The study area comprises Precambrian Shield, Caledonian and platform cover areas. Altogether 39933 samples with uranium, thorium and potassium concentration (C-U, C-Th and C-K) and density () data were available. Heat production (HP) was calculated using raw point data, binning on a regular grid, and averaging by bedrock units in the geological map. Methods based on raw point data and grid-based binning resulted in HP values of 2.5 +/- 4.1 and 2.5 +/- 5.6 Wm(-3), respectively, while averaging by lithology produced a lower value of 2.4 +/- 1.7 Wm(-3). Limiting the lithology-based averaging to Precambrian bedrockareas resulted in heat production of 2.4 +/- 1.6 Wm(-3). Due to the small geographic extent of area covered by sediments, this is similar to the Precambrian-only value. Regardless of the calculation method, heat production in Sweden is considerably higher than the corresponding value for Finland. The Swedish platform cover had apparently the lowestheat production (1.0 +/- 1.8 Wm(-3)) of all units but the presence of Precambrian rocks below the sediments means that this value strongly misleads if used to represent the entire upper crust. Svecokarelian (Svecofennian) and Sveconorwegian rocks, which comprised 94.0 per cent of all individual observations, had heat production values of 2.6 +/- 1.8 and 1.7 +/- 1.4 mu Wm(-3), respectively. Although the Swedish data still have large spatial gaps when compared to Finnish data, most bedrock units in Sweden are covered. It is obvious that the higher heat flow of Sweden compared to that of Finland is caused by near-surface (i.e. upper crustal) heat production, and crustal differentiation in Sweden is also larger.Peer reviewe

    Implications of a short carbon pulse on biofilm formation on mica schist in microcosms with deep crystalline bedrock groundwater

    Get PDF
    Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface. In this study, we examined further how a short pulse of low-molecular-weight carbon compounds impacts the formation and structure of sessile microbial communities on mica schist surfaces over an incubation period of similar to 3.5 years in microcosms containing deep subsurface groundwater from the depth of 500 m, from Outokumpu, Finland. The marker gene copy counts in the water and rock phases were estimated with qPCR, which showed that bacteria dominated the mica schist communities with a relatively high proportion of epilithic sulfate-reducing bacteria in all microcosms. The dominant bacterial phyla in the microcosms were Proteobacteria, Firmicutes, and Actinobacteria, whereas most fungal genera belonged to Ascomycota and Basidiomycota. Dissimilarities between planktic and sessile rock surface microbial communities were observed, and the supplied carbon substrates led to variations in the bacterial community composition.Peer reviewe

    Response of Deep Subsurface Microbial Community to Different Carbon Sources and Electron Acceptors during similar to 2 months Incubation in Microcosms

    Get PDF
    Acetate plays a key role as electron donor and acceptor and serves as carbon source in oligotrophic deep subsurface environments. It can be produced from inorganic carbon by acetogenic microbes or through breakdown of more complex organic matter. Acetate is an important molecule for sulfate reducers that are substantially present in several deep bedrock environments. Aceticlastic methanogens use acetate as an electron donor and/or a carbon source. The goal of this study was to shed light on carbon cycling and competition in microbial communities in fracture fluids of Finnish crystalline bedrock groundwater system. Fracture fluid was anaerobically collected from a fracture zone at 967 m depth of the Outokumpu Deep Drill Hole and amended with acetate, acetate + sulfate, sulfate only or left unamended as a control and incubated up to 68 days. The headspace atmosphere of microcosms consisted of 80% hydrogen and 20% CO2. We studied the changes in the microbial communities with community fingerprinting technique as well as high-throughput 16S rRNA gene amplicon sequencing. The amended microcosms hosted more diverse bacterial communities compared to the intrinsic fracture zone community and the control treatment without amendments. The majority of the bacterial populations enriched with acetate belonged to clostridial hydrogenotrophic thiosulfate reducers and Alphaproteobacteria affiliating with groups earlier found from subsurface and groundwater environments. We detected a slight increase in the number of sulfate reducers after the 68 days of incubation. The microbial community changed significantly during the experiment, but increase in specifically acetate-cycling microbial groups was not observed.Peer reviewe

    Rapid Reactivation of Deep Subsurface Microbes in the Presence of C-1 Compounds

    Get PDF
    Microorganisms in the deep biosphere are believed to conduct little metabolic activity due to low nutrient availability in these environments. However, destructive penetration to long-isolated bedrock environments during construction of underground waste repositories can lead to increased nutrient availability and potentially affect the long-term stability of the repository systems, Here, we studied how microorganisms present in fracture fluid from a depth of 500 m in Outokumpu, Finland, respond to simple carbon compounds (C-1 compounds) in the presence or absence of sulphate as an electron acceptor. C-1 compounds such as methane and methanol are important intermediates in the deep subsurface carbon cycle, and electron acceptors such as sulphate are critical components of oxidation processes. Fracture fluid samples were incubated in vitro with either methane or methanol in the presence or absence of sulphate as an electron acceptor. Metabolic response was measured by staining the microbial cells with fluorescent dyes that indicate metabolic activity and transcriptional response with RT-qPCR. Our results show that deep subsurface microbes exist in dormant states but rapidly reactivate their transcription and respiration systems in the presence of C-1 substrates, particularly methane. Microbial activity was further enhanced by the addition of sulphate as an electron acceptor. Sulphate- and nitrate-reducing microbes were particularly responsive to the addition of C-1 compounds and sulphate. These taxa are common in deep biosphere environments and may be affected by conditions disturbed by bedrock intrusion, as from drilling and excavation for long-term storage of hazardous waste.Peer reviewe
    • 

    corecore