19 research outputs found
Recommended from our members
Assembly of complimentary naphthyl units in nucleotidomimetic foldamers
The large and complex architectures found in biomolecules not only are an amazing feat of molecular construction, but they also function to carry out all the processes necessary to sustain a living organism. For the organic chemist and biochemist that wish to mimic, improve or modify the structure and function of such natural molecular architectures, an understanding of non-covalent interactions in solution is necessary. In order to probe the particular inter- and intramolecular interactions involved in constructing higher order molecular architectures, the study of foldamers, small synthetic oligomers that adopt well-defined conformations in solution, has emerged.
Our lab has been studying the particular interaction between complementary aromatic units, 1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI) and 1,5-dialkoxynaphthalene (DAN) and their ability to drive the construction of aromatic foldamers in aqueous environments. Utilizing flexible peptide linked units of DAN and NDI, our lab has constructed a variety of unique folding assemblies. From the very first aromatic foldamer that folds into a pleated secondary structure in water to a heteroduplex system assembling oligo-DAN and oligo-NDI units in an intertwined fashion, the use of these complementary aromatic units has proven its versatility in foldamer assembly.
Generally, this dissertation describes studies of the first NDI and DAN deoxyribonucleic acid oligonucleotides. While our previous foldamer assemblies utilized peptide linkers to string together DAN and NDI units, the work described herein draws inspiration from the sugar-phosphate backbone of DNA to assemble aromatic units.
Chapter 2 describes the design and synthesis of 4,4ā-dimethoxytrityl protected DAN and NDI phosphoramidites that can subsequently be incorporated into strands of natural DNA oligonucleotides using automated solid phase oligonucleotide synthesis. Chapter 3 investigates the insertion of a 3 base pair region of varying sequences of DAN and NDI into a 12-mer DNA oligonucleotide to explore the effect of DAN and NDI on duplex structure and stability. Chapter 4 describes the stability and structure of a 9-mer DNA oligonucleotide that incorporates two NDI-DAN-NDI triplet sequences either inserted into the interior of the duplex or appended at the terminal positions of the duplex. The NDI-DAN-NDI triplets appended to the terminal positions led to a profound increase in duplex stability (in comparison to internal positions), significantly beyond that seen with analogous sequences of G-C base pairs.Chemistr
Recommended from our members
The effect of temperature and salinity acclimation on the respiration rate of a marine polychaete, Serpula vermicularis L.
In January 1970, collections of Serpula vermicularis L. were
obtained from Bray Point, Oregon, for the purpose of determining the
effect of acclimation to salinity and temperature on its rate of
respiration. The worms were removed from their tubes and acclimated to one of three salinities (28.8%ā, 31.1%ā, or 35.9%ā) and one of two
temperatures (10Ā°C or 15Ā°C). Following a two-week acclimation
period, measurements of the rates of respiration were made at 10Ā°C,
15Ā°C, 20Ā°C, 25Ā°C, and 30Ā°C.
The results of these measurements revealed that acclimation to
salinity has no effect on the rate of respiration of Serpula vermicularis. This indicates that the serpulids had undergone complete compensation to these salinities. In comparing the rates of respiration of serpulids
acclimated to different temperatures, it was found that the cold
acclimated worms had higher rates of respiration than the warm
acclimated worms at all experimental temperatures.
The results of acclimation to temperature might be used to
compare serpulids from different geographical areas. Perhaps such
experiments would enable the researcher to gain insight into the
variability of temperature regimes in different geographical locations
by measuring the rates of respiration of serpulids collected in these
areas
Subtle Recognition of 14-Base Pair DNA Sequences via Threading Polyintercalation
ABSTRACT: Small molecules that bind DNA in a sequence-specific manner could act as antibiotic, antiviral, or anticancer agents because of their potential ability to manipulate gene expression. Our laboratory has developed threading poly-intercalators based on 1,4,5,8-naphthalene diimide (NDI) units connected in a head-to-tail fashion by flexible peptide linkers. Previously, a threading tetraintercalator composed of alternating minorāmajorāminor groove-binding modules was shown to bind specifically to a 14 bp DNA sequence with a dissociation half-life of 16 days [Holman, G. G., et al. (2011) Nat. Chem. 3, 875ā881]. Herein are described new NDI-based tetraintercalators with a different major groove-binding module and a reversed N to C directionality of one of the minor groove-binding modules. DNase I footprinting and kinetic analyses revealed that these new tetraintercalators are able to discriminate, by as much as 30-fold, 14 bp DNA binding sites that differ by 1 or 2 bp. Relative affinities were found to correlate strongly with dissociation rates, while overall C2 symmetry in the DNA-binding molecule appeared to contribute to enhanced association rates
NDI and DAN DNA: Nucleic Acid-Directed Assembly of NDI and DAN
Two novel DNA base
surrogate phosphoramidites <b>1</b> and <b>2</b>, based
upon relatively electron-rich 1,5-dialkoxynaphthalene
(DAN) and relatively electron-deficient 1,4,5,8-naphthalenetetracarboxylic
diimide (NDI), respectively, were designed, synthesized, and incorporated
into DNA oligonucleotide strands. The DAN and NDI artificial DNA bases
were inserted within a three-base-pair region within the interior
of a 12-mer oligonucleotide duplex in various sequential arrangements
and investigated with CD spectroscopy and UV melting curve analysis.
The CD spectra of the modified duplexes indicated B-form DNA topology.
Melting curve analyses revealed trends in DNA duplex stability that
correlate with the known association of DAN and NDI moieties in aqueous
solution as well as the known favorable interactions between NDI and
natural DNA base pairs. This demonstrates that DNA duplex stability
and specificity can be driven by the electrostatic complementarity
between DAN and NDI. In the most favorable case, an NDIāDANāNDI
arrangement in the middle of the DNA duplex was found to be approximately
as stabilizing as three AāT base pairs
Subtle Recognition of 14-Base Pair DNA Sequences via Threading Polyintercalation
Small molecules that bind DNA in a sequence-specific
manner could
act as antibiotic, antiviral, or anticancer agents because of their
potential ability to manipulate gene expression. Our laboratory has
developed threading polyintercalators based on 1,4,5,8-naphthalene
diimide (NDI) units connected in a head-to-tail fashion by flexible
peptide linkers. Previously, a threading tetraintercalator composed
of alternating minorāmajorāminor groove-binding modules
was shown to bind specifically to a 14 bp DNA sequence with a dissociation
half-life of 16 days [Holman, G. G., et al. (2011) <i>Nat. Chem.
3</i>, 875ā881]. Herein are described new NDI-based tetraintercalators
with a different major groove-binding module and a reversed N to C
directionality of one of the minor groove-binding modules. DNase I
footprinting and kinetic analyses revealed that these new tetraintercalators
are able to discriminate, by as much as 30-fold, 14 bp DNA binding
sites that differ by 1 or 2 bp. Relative affinities were found to
correlate strongly with dissociation rates, while overall <i>C</i><sub>2</sub> symmetry in the DNA-binding molecule appeared
to contribute to enhanced association rates