293 research outputs found

    Gas turbine engine control system

    Get PDF
    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal

    Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an Airport Terminal building displacement conditioning system

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2013 Elsevier.This paper reports on the energy performance evaluation of a displacement ventilation (DV) system in an airport departure hall, with a conventional DV diffuser and a diffuser retrofitted with a phase change material storage heat exchanger (PCM-HX). A TRNSYS-CFD quasi-dynamic coupled simulation method was employed for the analysis, whereby TRNSYS® simulates the HVAC and PID control system and ANSYS FLUENT® is used to simulate the airflow inside the airport terminal space. The PCM-HX is also simulated in CFD, and is integrated into the overall model as a secondary coupled component in the TRNSYS interface. Different night charging strategies of the PCM-HX were investigated and compared with the conventional DV diffuser. The results show that: i) the displacement ventilation system is more efficient for cooling than heating a space; ii) the addition of a PCM-HX system reduces the heating energy requirements during the intermediate and summer periods for specific night charging strategies, whereas winter heating energy remains unaffected; iii) the PCM-HX reduces cooling energy requirements, and; iv) maximum energy savings of 34% are possible with the deployment of PCM-HX retrofitted DV diffuser.This work was funded by the UK Engineering and Physical Sciences Research Council (EPSRC), Grant No: EP/H004181/1

    Realistic modeling of leakage and intrusion flows through leak openings in pipes

    Get PDF
    The hydraulics of leakage and intrusion flows through leak openings in pipes is complicated by variations in the leak areas owing to changes in pressure. This paper argues that the pressure–area relationship can reasonably be assumed to be a linear function, and a modified orifice equation is proposed for more realistic modeling of leakage and intrusion flows. The properties of the modified orifice equation are explored for different classes of leak openings. The implications for the current practice of using a power equation to model leakage and intrusion flows are then investigated. A mathematical proof is proposed for an equation linking the parameters of the modified orifice and power equations using the concept of a dimensionless leakage number. The leakage exponent of a given leak opening is shown to generally not be constant with variations in pressure and to approach infinity when the leakage number approaches a value of minus one. Significant modeling errors may result if the power equation is extrapolated beyond its calibration pressure range or at high exponent values. It is concluded that the modified orifice equation and leakage number provide a more realistic description of leakage and intrusion flows, and it is recommended that this approach be adopted in modeling studies

    An experimental and numerical investigation of the use of liquid flow in serpentine microchannels for microelectronics cooling

    Get PDF
    This paper presents a combined experimental and numerical investigation of single-phase water flow and heat transfer in serpentine rectangular microchannels embedded in a heated copper block. The performance of four different microchannel heat sink (MCHS) configurations are investigated experimentally, the first having an array of straight rectangular microchannels (SRMs), while the other have single (SPSMs), double (DPSMs) and triple path multi-serpentine rectangular microchannels (TPSMs). Three-dimensional conjugate heat transfer models are developed for both laminar and turbulent single-phase water flows in each of these MCHSs and the governing flow and energy equations solved numerically using finite elements. The numerical predictions of pressure drop (∆P) and average Nusselt number (〖Nu〗_avg) are in good agreement with experimental data, and indicated that the single path serpentine microchannel (SPSM) leads to a 35% enhancement of the 〖Nu〗_avg at a volumetric flow rate of 0.5 l/min and a 19% reduction in total thermal resistance (R_th) compared to the conventional SRM heat sink. However, this enhancement is at the expense of a large (up to ten-fold) increase in ∆P compared to the SRM heat sink, so that a suitable compromise must be struck between heat transfer and pressure drop in practical MCHS designs

    Brine utilisation for cooling and salt production in wind-driven seawater greenhouses:Design and modelling

    Get PDF
    Brine disposal is a major challenge facing the desalination industry. Discharged brines pollute the oceans and aquifers. Here is it proposed to reduce the volume of brines by means of evaporative coolers in seawater greenhouses, thus enabling the cultivation of high-value crops and production of sea salt. Unlike in typical greenhouses, only natural wind is used for ventilation, without electric fans. We present a model to predict the water evaporation, salt production, internal temperature and humidity according to ambient conditions. Predictions are presented for three case studies: (a) the Horn of Africa (Berbera) where a seawater desalination plant will be coupled to salt production; (b) Iran (Ahwaz) for management of hypersaline water from the Gotvand dam; (c) Gujarat (Ahmedabad) where natural seawater is fed to the cooling process, enhancing salt production in solar salt works. Water evaporation per face area of evaporator pad is predicted in the range 33 to 83 m3/m2·yr, and salt production up to 5.8 tonnes/m2·yr. Temperature is lowest close to the evaporator pad, increasing downwind, such that the cooling effect mostly dissipates within 15 m of the cooling pad. Depending on location, peak temperatures reduce by 8–16 °C at the hottest time of year

    Flow resistance: a design guide for engineers

    No full text
    A sourcebook offering an up-to-date perspective on a variety of topics and using practical, applications-oriented data necessary for the design and evaluation of internal fluid system pressure losses. It has been prepared for the practicing engineer who understands fluid-flow fundamentals

    An application of modern control theory to a high bypass variable compressor geometry jet engine

    No full text
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Includes bibliographical references.by Michael S. Idelchik.M.S

    Header design for flow equalization in microstructured reactors

    No full text
    To enhance the uniformity of fluid flow distribution in microreactors, a header configuration consisting of a cone diffuser connected to a thick-walled screen has been proposed. The thick-walled screen consists of two sections: the upstream section constitutes a set of elongated parallel upstream channels and the downstream section constitutes a set of elongated parallel downstream channels positioned at an angle of 90° with respect to the upstream channels. In this approach the problem of flow equalization reduces to that of flow equalization in the first and second downstream channels of the thick-walled screen. In turn, this requires flow equalization in the corresponding cross sections of the upstream channels. The computational fluid dynamics analysis of the fluid flow maldistribution shows that eight parallel upstream channels with a width of 300-600 m are required per 1 cm of length for flow equalization. The length to width ratio of these channels has to be >15. The numerical results suggest that the proposed header configuration can effectively improve the performance of the downstream microstructured devices, decreasing the ratio of the maximum flow velocity to the mean flow velocity from 2 to 1.005 for a wide range of Reynolds numbers (0.5-10)
    • …
    corecore