28 research outputs found

    Phylogenomic assessment prompts recognition of the Serianthes clade and confirms the monophyly of Serianthes and its relationship with Falcataria and Wallaceodendron in the wider ingoid clade (Leguminosae, Caesalpinioideae)

    Full text link
    The Indo-Pacific legume genus Serianthes was recently placed in the Archidendron clade (sensu Koenen et al. 2020), a subclade of the mimosoid clade in subfamily Caesalpinioideae, which also includes Acacia, Archidendron, Archidendropsis, Falcataria, Pararchidendron, Paraserianthes and Wallaceodendron. Serianthes comprises ca. 18 species, five subspecies and two varieties that are characterised by bipinnately compound leaves with alternate sessile leaflets, branched axillary corymbiform panicles and woody indehiscent pods. Generic relationships, as well as species relationships within genera in the Archidendron clade, remain uncertain. While the sister relationship between Serianthes and the genus Falcataria is strongly supported by molecular data, the distinction between Serianthes and the monotypic genus Wallaceodendron has been questioned, based on their similar flower and fruit morphologies. We combined three gene-enriched hybrid capture DNA sequence datasets (generated from the 964 mimobaits v1 probe set, the expanded 997 mimobaits v2 probe set and the GoFlag angiosperm 408 probe set) and used their overlapping markers (77 loci of the target exonic and flanking regions) to test the monophyly of Serianthes and to investigate generic relationships within the Archidendron clade using 55 ingoid plus two outgroup taxa. We show that Serianthes is monophyletic, confirm the Serianthes + Falcataria sister relationship to Wallaceodendron and recognise this combined clade as the Serianthes clade within the Archidendron clade. We also evaluated the use of overlapping loci across datasets in combination with concordance analyses to test generic relationships and further investigate previously unresolved relationships across the wider ingoid clade. Concordance analysis revealed limited gene tree conflicts near the tips of the Archidendron clade, but increased discordance at the base of the clade, which could be attributed to rapid lineage divergence (radiation) and/or incomplete lineage sorting

    Population genomic and historical analysis suggests a global invasion by bridgehead processes in Mimulus guttatus

    Get PDF
    © 2021, The Author(s). Imperfect historical records and complex demographic histories present challenges for reconstructing the history of biological invasions. Here, we combine historical records, extensive worldwide and genome-wide sampling, and demographic analyses to investigate the global invasion of Mimulus guttatus from North America to Europe and the Southwest Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at >44,000 loci, we determined that invasive M. guttatus was first likely introduced to the British Isles from the Aleutian Islands (Alaska), followed by admixture from multiple parts of the native range. We hypothesise that populations in the British Isles then served as a bridgehead for vanguard invasions worldwide. Our results emphasise the highly admixed nature of introduced M. guttatus and demonstrate the potential of introduced populations to serve as sources of secondary admixture, producing novel hybrids. Unravelling the history of biological invasions provides a starting point to understand how invasive populations adapt to novel environments

    Non-native vascular flora of the Arctic : Taxonomic richness, distribution and pathways

    Get PDF
    We present a comprehensive list of non-native vascular plants known from the Arctic, explore their geographic distribution, analyze the extent of naturalization and invasion among 23 subregions of the Arctic, and examine pathways of introductions. The presence of 341 non-native taxa in the Arctic was confirmed, of which 188 are naturalized in at least one of the 23 regions. A small number of taxa (11) are considered invasive; these plants are known from just three regions. In several Arctic regions there are no naturalized non-native taxa recorded and the majority of Arctic regions have a low number of naturalized taxa. Analyses of the non-native vascular plant flora identified two main biogeographic clusters within the Arctic: American and Asiatic. Among all pathways, seed contamination and transport by vehicles have contributed the most to non-native plant introduction in the Arctic.Peer reviewe

    Transcriptome Sequences Resolve Deep Relationships of the Grape Family

    Get PDF
    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated

    On Open Access, data mining and plant conservation in the Circumpolar North with an online data example of the Herbarium, University of Alaska Museum of the North

    No full text
    With the advent of global online data sharing initiatives, few limits remain to using the treasure troves of museum data for biodiversity and conservation. The University of Alaska herbarium (ALA) is fully online with metadata. Over 260,000 specimens representing the largest collection of Alaska plants anywhere can be data mined. We found that most specimens were collected through the National Park Serviceâ s Inventory and Monitoring program at Denali National Park and Preserve. The majority of specimens were collected along roads, trails, coastline or waterways, while high-altitude, remote and pristine sampling locations are underrepresented still. Actual field efforts varied over the years, peaking in the late 1980s. From 1-400 specimens were collected per sampling location, and on average 40 species were obtained per collection event at a unique location. Our analysis presents a first data mining inventory of such open access data allowing for a rapid assessment, quality control and predictive modeling involving automated high-performing machine learning algorithms and mapping analysis using open geographic information systems (GIS) concepts. Our research sets a first template for more investigations in the Arctic and we briefly compare with selected specimen details from adjacent landscapes like the Russian Far East, Canada, and the circumpolar North.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    VASCULAR PLANT TYPES IN THE ARIZONA STATE UNIVERSITY HERBARIUM

    No full text
    Volume: 19Start Page: 1039End Page: 105
    corecore