2,469 research outputs found

    The silicon stable isotope distribution along the GEOVIDE section (GEOTRACES GA-01) of the North Atlantic Ocean

    Get PDF
    The stable isotope composition of dissolved silicon in seawater (ή30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in ή30SiDSi below 500 m were closely tied to the distribution of water masses. Higher ή30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower ή30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest ή30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the ή30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high ή30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both ή30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE ή30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local ή30SiDSi distribution

    Neutrino Oscillations from Supersymmetry without R-parity - Its Implications on the Flavor Structure of the Theory

    Get PDF
    We discuss here some flavor structure aspects of the complete theory of supersymmetry without R-parity addressed from the perspective of fitting neutrino oscillation data based on the recent Super-Kamiokande result. The single-VEV parametrization of supersymmetry without R-parity is first reviewed, illustrating some important features not generally appreciated. For the flavor structure discussions, a naive, flavor model independent, analysis is presented, from which a few interesting things can be learned.Comment: 1+10 pages latex, no figure; Invited talk at NANP 99 conference, Dubna (Jun 28 - Jul 3) --- submission for the proceeding

    Toward Realistic Intersecting D-Brane Models

    Full text link
    We provide a pedagogical introduction to a recently studied class of phenomenologically interesting string models, known as Intersecting D-Brane Models. The gauge fields of the Standard-Model are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersections can give rise to chiral fermions. We address the basic issues and also provide an overview of the recent activity in this field. This article is intended to serve non-experts with explanations of the fundamental aspects, and also to provide some orientation for both experts and non-experts in this active field of string phenomenology.Comment: 85 pages, 8 figures, Latex, Bibtex, v2: refs added, typos correcte

    Co-evolution of RDF Datasets

    Get PDF
    Linking Data initiatives have fostered the publication of large number of RDF datasets in the Linked Open Data (LOD) cloud, as well as the development of query processing infrastructures to access these data in a federated fashion. However, different experimental studies have shown that availability of LOD datasets cannot be always ensured, being RDF data replication required for envisioning reliable federated query frameworks. Albeit enhancing data availability, RDF data replication requires synchronization and conflict resolution when replicas and source datasets are allowed to change data over time, i.e., co-evolution management needs to be provided to ensure consistency. In this paper, we tackle the problem of RDF data co-evolution and devise an approach for conflict resolution during co-evolution of RDF datasets. Our proposed approach is property-oriented and allows for exploiting semantics about RDF properties during co-evolution management. The quality of our approach is empirically evaluated in different scenarios on the DBpedia-live dataset. Experimental results suggest that proposed proposed techniques have a positive impact on the quality of data in source datasets and replicas.Comment: 18 pages, 4 figures, Accepted in ICWE, 201

    Electric Dipole Moments in the Generic Supersymmetric Standard Model

    Get PDF
    The generic supersymmetric standard model is a model built from a supersymmetrized standard model field spectrum the gauge symmetries only. The popular minimal supersymmetric standard model differs from the generic version in having R-parity imposed by hand. We review an efficient formulation of the model and some of the recently obtained interesting phenomenological features, focusing on one-loop contributions to fermion electric dipole moments.Comment: 1+7 pages Revtex 3 figures incoporated; talk at NANP'0

    Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra

    Get PDF
    Recently it has been shown that string instanton effects may give rise to neutrino Majorana masses in certain classes of semi-realistic string compactifications. In this paper we make a systematic search for supersymmetric MSSM-like Type II Gepner orientifold constructions admitting boundary states associated with instantons giving rise to neutrino Majorana masses and other L- and/or B-violating operators. We analyze the zero mode structure of D-brane instantons on general type II orientifold compactifications, and show that only instantons with O(1) symmetry can have just the two zero modes required to contribute to the 4d superpotential. We however discuss how the addition of fluxes and/or possible non-perturbative extensions of the orientifold compactifications would allow also instantons with Sp(2)Sp(2) and U(1) symmetries to generate such superpotentials. In the context of Gepner orientifolds with MSSM-like spectra, we find no models with O(1) instantons with just the required zero modes to generate a neutrino mass superpotential. On the other hand we find a number of models in one particular orientifold of the Gepner model (2,4,22,22)(2,4,22,22) with Sp(2)Sp(2) instantons with a few extra uncharged non-chiral zero modes which could be easily lifted by the mentioned effects. A few more orientifold examples are also found under less stringent constraints on the zero modes. This class of Sp(2)Sp(2) instantons have the interesting property that R-parity conservation is automatic and the flavour structure of the neutrino Majorana mass matrices has a simple factorized form.Comment: 68 pages, 2 figures; v2. typos corrected, refs adde

    Dynamical supersymmetry breaking with a large internal dimension

    Full text link
    Supersymmetry breaking in string perturbation theory predicts the existence of a new dimension at the TeV scale. The simplest realization of the minimal supersymmetric Standard Model in the context of this mechanism has two important consequences: (i) A natural solution to the Ό\mu-problem; (ii) The absence of quadratic divergences in the cosmological constant, which leads to a dynamical determination of the supersymmetry breaking and electroweak scale. We present an explicit example in which the whole particle spectrum is given as a function of the top quark mass. A generic prediction of this mechanism is the existence of Kaluza-Klein excitations for gauge bosons and higgses. In particular the first excitation of the photon could be accessible to future accelerators and give a clear signal of the proposed mechanism.Comment: 27 pages, latex, 6 figures available by FAX upon reques

    Instanton effects in N=1 brane models and the Kahler metric of twisted matter

    Get PDF
    We consider locally consistent systems of magnetized D9 branes on an orbifolded six-torus which support N=1 gauge theories. In such realizations, the matter multiplets arise from "twisted" strings connecting different stacks of branes. The introduction of Euclidean 5 branes (E5) wrapped on the six-dimensional compact space leads to instanton effects. For instance, if the system is engineered so as to yield SQCD, a single E5 brane may account for the ADS/TVY superpotential. We discuss the subtle interplay that exists between the annuli diagrams with an E5 boundary and the holomorphicity properties of the effective low-energy action of the N=1 theory. The consistency of this picture allows to obtain information on the Kahler metric of the chiral matter multiplets arising from twisted strings.Comment: 33 pages, 4 figures. V2: improved discussion, clarifyng comments and references added. Version to be published in JHE

    Gauging Away the Strong CP Problem

    Full text link
    We propose a new solution to the strong-CP problem. It involves the existence of an unbroken gauged U(1)XU(1)_X symmetry whose gauge boson gets a Stuckelberg mass term by combining with a pseudoscalar field η(x)\eta (x). The latter has axion-like couplings to FQCD∧FQCDF_{QCD}\wedge F_{QCD} so that the theta parameter may be gauged away by a U(1)XU(1)_X gauge transformation. This system leads to mixed gauge anomalies and we argue that they are cancelled by the addition of an appropriate Wess-Zumino term, so that no SM fermions need to be charged under U(1)XU(1)_X. We discuss scenarios in which the above set of fields and couplings appear. The mechanism is quite generic, but a natural possibility is that the the U(1)XU(1)_X symmetry arises from bulk gauge bosons in theories with extra dimensions or string models. We show that in certain D-brane Type-II string models (with antisymmetric tensor field strength fluxes) higher dimensional Chern-Simons couplings give rise to the required D=4 Wess-Zumino terms upon compactification. In one of the possible string realizations of the mechanism the U(1)XU(1)_X gauge boson comes from the Kaluza-Klein reduction of the eleven-dimensional metric in M-theory.Comment: 21 pages, latex, one eps figure; v2 improved discussio

    Non-perturbative effective interactions from fluxes

    Get PDF
    Motivated by possible implications on the problem of moduli stabilization and other phenomenological aspects, we study D-brane instanton effects in flux compactifications. We focus on a local model and compute non-perturbative interactions generated by gauge and stringy instantons in a N = 1 quiver theory with gauge group U(N_0) x U(N_1) and matter in the bifundamentals. This model is engineered with fractional D3-branes at a C^3/(Z_2 x Z_2) singularity, and its non-perturbative sectors are described by introducing fractional D-instantons. We find a rich variety of instanton-generated F- and D-term interactions, ranging from superpotentials and Beasley-Witten like multi-fermion terms to non-supersymmetric flux-induced instanton interactions.Comment: 37 pages, 7 figures. Final version published on JHEP. Section 4 modified in several points regarding string corrections in absence of fluxes; in particular, section 4.3 is removed. Some other minor changes and two references adde
    • 

    corecore