
Wright State University Wright State University

CORE Scholar CORE Scholar

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis)

2016

Co-Evolution of RDF Datasets Co-Evolution of RDF Datasets

Sidra Faisal

Kemele M. Endris

Saeedeh Shekarpour
Wright State University - Main Campus, saeedeh.shekarpour@wright.edu

Sören Auer

Maria-Esther Vidal

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons,

Databases and Information Systems Commons, OS and Networks Commons, and the Science and

Technology Studies Commons

Repository Citation Repository Citation
Faisal, S., Endris, K. M., Shekarpour, S., Auer, S., & Vidal, M. (2016). Co-Evolution of RDF Datasets. Lecture
Notes in Computer Science, 9671, 225-243.
https://corescholar.libraries.wright.edu/knoesis/1125

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu

Co-evolution of RDF Datasets

Sidra Faisal, Kemele M. Endris, Saeedeh Shekarpour, Sören Auer,
Maria-Esther Vidal

University of Bonn & Fraunhofer IAIS, Bonn, Germany
{lastname}@cs.uni-bonn.de

Abstract. Linking Data initiatives have fostered the publication of large
number of RDF datasets in the Linked Open Data (LOD) cloud, as well
as the development of query processing infrastructures to access these
data in a federated fashion. However, different experimental studies have
shown that availability of LOD datasets cannot be always ensured, be-
ing RDF data replication required for envisioning reliable federated query
frameworks. Albeit enhancing data availability, RDF data replication re-
quires synchronization and conflict resolution when replicas and source
datasets are allowed to change data over time, i.e., co-evolution manage-
ment needs to be provided to ensure consistency. In this paper, we tackle
the problem of RDF data co-evolution and devise an approach for conflict
resolution during co-evolution of RDF datasets. Our proposed approach
is property-oriented and allows for exploiting semantics about RDF prop-
erties during co-evolution management. The quality of our approach is
empirically evaluated in different scenarios on the DBpedia-live dataset.
Experimental results suggest that proposed proposed techniques have a
positive impact on the quality of data in source datasets and replicas.

Key words: Dataset Synchronization, Dataset Co-evolution, Conflict Identifi-
cation, Conflict Resolution, RDF Dataset

1 Introduction

During the last decade, the Linked Open Data (LOD) cloud has considerably
grown [20], comprising currently more than 85 billion triples from approximately
3400 datasets1. Further, Web based interfaces such as SPARQL endpoints [9] and
Linked Data fragments [23], have been developed to access RDF data following
the HTTP protocol, while federated query processing frameworks allow users to
pose queries against federations of RDF datasets. Nevertheless, empirical studies
by Buil-Aranda et al. [6] suggest the lack of Web availability of a large number of
LOD datasets, being frequently required the replication of small portions of data,
i.e., slices of an RDF dataset, to enhance reliability and performance of Linked
Data applications [7]. Although RDF replication allows for enhancing RDF data
availability, synchronization problems may be generated because source datasets
1 Observed on 17th December 2015 on http://stats.lod2.eu/.

http://stats.lod2.eu/

and replicas may change over time, e.g., DBpedia Live mirror tool2 publishes
changes in a public changesets folder3.

Co-evolution refers to mutual propagation of the changes between a replica
and its origin or source dataset, where propagation specially in a mutual way,
raises synchronization issues which need to be addressed to avoid data incon-
sistency. Issues are about how changes should be propagated and in case of
inconsistencies or data conflicts, how these conflicts should be resolved. Thus,
our main research problem is to develop a co-evolution process able to exploit
the properties of RDF data and solve conflicts generated by the propagation of
changes among source datasets and replicas. We propose a two-fold co-evolution
approach, comprised of the following components: i) an RDF data synchroniza-
tion component, and ii) a component for conflict identification and resolution.

Our approach relies on the assumption that either the source dataset provides
a tool to compute a changeset at real-time or third party tools can be used for
this purpose. Another assumption is that slices of the RDF data from the source
dataset are replicated in the replicas or target datasets, where a slice4 corresponds
to an RDF subgraph of the source RDF graph [18].

Figure1 illustrates the co-evolution between two RDF datasets. Initially, a
slice of source dataset is used to create a target dataset, i.e., the target dataset Tt0
is sliced from the source dataset St0 of dataset S at time t0. Both the source and
target datasets evolve themselves with the passage of time, e.g., these datasets
evolve to Stj and Ttj during timeframe ti� tj , while ti tj . Changes from Stj ,
denoted by δpSti�tj q, are propagated to the target and vice versa by the RDF
data synchronization component. For synchronization, changes from both source
and target datasets are compared to identify conflicts. The resolved conflicts are
applied on the source and target datasets to vanish inconsistencies, for example,
at time point tj , the co-evolution manager identifies the conflicts and resolves
them. The conflicts are resolved and final changes are merged in both datasets.

We empirically evaluate the quality of our co-evolution approach on different
co-evolution scenarios of data from the DBpedia5 and changesets from DBpedia-
live published from September 01, 2015 to October 31, 2015 using iRap [8]. The
goal of the evaluation is to study the impact on data quality of the propose
co-evolution process, where quality is measured in terms of completeness, con-
sistency, and consciseness [24]. Observed experimental results suggest that our
synchronization, and conflict identification and resolution techniques positively
affect the quality of the data in both the source and target datasets.

The paper is structured as follows: Section 3 provides formal definitions of
the basic notations and concepts used in the proposed co-evolution approach.
Section 4 presents detailed problem description and different synchronization
strategies. We then present the proposed approach in Section 5 followed by

2 https://github.com/dbpedia/dbpedia-live-mirror
3 http://live.dbpedia.org/changesets/
4 An RDF slice is also known as a fragment in the approaches proposed by Ibañez et
al. [10], Montoya et al. [15], and Verborgh et al. [23].

5 http://wiki.dbpedia.org/

https://github.com/dbpedia/dbpedia-live-mirror
http://live.dbpedia.org/change sets/
http://wiki.dbpedia.org/

1. A dataset slice
(subgraph of S)

Source dataset S
(e.g., DBpedia)

Target dataset
(extracted from DBpedia)

evolve evolve

2. Pull changes

Synchronized datasets

to

tj

time

Co-evolution
manager

 (S
ti-tj

)δ

S
to

T
to

S
tj

T
tj

3. Apply strategy
4. Apply changes

T
tj

S
tj

5. Propagate changes

ti

Dataset Provider Client

target changes

Fig. 1: Co-evolution of linked datasets

evaluation in Section 6. Section 7 presents the related work. We close with the
conclusion and the directions for the future work.

2 Motivating example

Let us assume an application which requires information of politicians (e.g.,
name, birthYear, and spouse). This information can be sliced from the datasets
like DBpedia 6, and used locally by the application. We use the following SPARQL
query to slice DBpedia for our use case scenario:
CONSTRUCT WHERE {

?s rdf:type dbo:Politician.
OPTIONAL {
?s foaf:name ?name.
?s dbp:birthYear ?birthYear.
?s dbp:spouse ?spouse.
?s owl:sameAs ?sameAs }
}

Our approach is inspired from the scenario described in Figure 2. Initially,
at time t0, this slice is used to populate target dataset. Both source and tar-
get datasets evolve during timeframe ti � tj , while ti tj . Source dataset
adds object value dbo : Agent for rdf:type, AdrianSanders for foaf:name, 1959
for dbp:birthYear, and Freebase : AdrianSanders and http://wikidata.org/

entity/Q479047 for owl:sameAs to resource dbr:Adrian_Sanders. Target dataset
adds object value dbo : MemberOfParliment for rdf:type, Sanders,Adrian for
foaf:conname, and Freebase : AdrianSanders and http://yago-knowledge.org/

resource/Adrian_Sanders for owl:sameAs to resource dbr:Adrian_Sanders.
6 http://dbpedia.org

http://wikidata.org/entity/Q479047
http://wikidata.org/entity/Q479047
http://yago-knowledge.org/resource/Adrian_Sanders
http://yago-knowledge.org/resource/Adrian_Sanders

 1959-01-01(xsd:date)

Alison Sanders

http://yago-knowledge.org/resource/Adrian_Sanders

dbr:Adrian_Sanders

Adrian Sanders

Sanders,Adrian

foaf:name

Freebase:Adrian Sanders

dbr:Adrian_Sanders Adrian Sanders

Freebase:Adrian Sanders

 dbo:Politician
 dbo:Politician

dbr:Adrian_Sanders

 1959-01-01(xsd:date)

 dbp:birthYear

Alison Sanders

dbp:spouse

 dbo:Politician

rdf:type

dbo:Agent dbo:MemberOfParliment

http://wikidata.org/entity/Q479047 http://yago-knowledge.org/resource/Adrian_Sanders

dbr:Adrian_Sanders

 1959-01-01(xsd:date)Alison Sanders

dbp:spouse

 dbo:Politician

dbr:Adrian_Sanders

Adrian Sanders

Sanders,Adrian

owl:sameAs

dbr:Adrian_Sanders Sanders,Adrian

 dbo:Politician
 dbo:Politician

 dbo:MemberOfParliment
 dbo:MemberOfParliment

http://wikidata.org/entity/Q479047

http://yago-knowledge.org/resource/Adrian_Sanders

Adrian Sanders

http://wikidata.org/entity/Q479047

(a) Datasets at time t
0

(b) Datasets evolved during timeframe ti-tj

(c) Synchronised datasets at time tj

Functional property

Representing same resource

Conflicting triples added by source and target

Source Target

dbo:Agent
dbo:Agent

dbo:Agent

rdf:type

rdf:type rdf:typedbp:spouse dbp:spouse

 1959-01-01(xsd:date) 1959-01-01(xsd:date)

1959

Alison Sanders

 dbp:birthYear dbp:birthYear

 dbp:birthYear dbp:birthYear

 dbp:birthYear

 1959-01-01(xsd:date)

rdf:type rdf:type

foaf:name

foaf:name foaf:name

owl:sameAs

owl:sameAs owl:sameAs

addition

deletion

Fig. 2: Motivating example: a) Target dataset initialization, b) evolution, and c)
synchronization with source

For resource dbr:Adrian_Sanders, we have two different values for rdf:type
in source and target changesets. We need to check which of them is correct. We
already know dbr:Adrian_Sanders can be an agent and member of parliment
at the same time. However, this check can be made by looking whether the
two classes are disjoint or not. Source adds object value 1959 for dbp:birthYear
to dbr:Adrian_Sanders. As dbp:birthYear is a functional property, it can have
only one value. So, we have to choose one value among the already existing
value 1959 � 01 � 01 in dataset and the new value 1959 in the changeset. One
solution can be to randomly select one value among two. Similarly, source adds
object value Freebase : AdrianSanders for owl:sameAs while target dataset
deletes this value after adding it. Considering target as a more customized
dataset, we prefer the changes of target over source changes. Thus, we delete
Freebase : AdrianSanders in synchronized dataset. We still have two different
owl:sameAs values for dbr:Adrian_Sanders. However, as they are representing
the same resource, we will keep both values in synchronized dataset.

3 Preliminaries

In this section, we formalize the main concepts required for realizing co-evolution
of RDF datasets. The Resource Description Framework (RDF)7 is widely used to
represent information on the Web. A resource can be any thing (either physical or
conceptual). The RDF data model expresses statements about Web resources in
the form of subject-predicate-object (triple). The subject denotes a resource; the
predicate expresses a property of subject or a relationship between the subject
and the object; the object is either a resource or literal. For identifying resources,
RDF uses Uniform Resource Identifiers (URIs)8 and Internationalized Resource
Identifier (IRIs)9. The rationale behind is that the names of resources must be
universally unique. We assume that both source and target datasets are RDF
datasets. An RDF dataset is formally defined as follows:

Definition 1 (RDF Dataset). Formally, an RDF dataset is a finite set of
triples ps, p, oq P pIYBq� I�pIYLYBq, where I,B, andL are the disjoint sets
of all IRIs, blank nodes, and literals [8].

Let us assume that the slice contains the following triples
dbr:Adrian_Sanders rdf:type dbo:Politician;

dbp:spouse Alison Sanders;
dbp:birthYear 1959-01-01 (xsd:date).

Listing 1.1: Content of initial target dataset

This local copy of sliced dataset, referred as target dataset, might undergo
changes by user feedback (e.g. user can update the restaurant rating or fulfil
abstract information). After some time, DBpedia dataset also evolves by adding
new restaurants information or updating the existing ones. As a result, target
dataset might be out of date and need to be synchronized with DBpedia. During
synchronization, a conflict (defined in Definition 5) might occur, if the same
information was updated by the source (DBpedia) dataset and the target dataset
(by the app users).

Definition 2 (Evolving RDF Dataset). Let us assume that Dti represents
the version of the RDF dataset D at the particular time ti. An evolving dataset D
is a dataset whose triples change over time. In other words, for timeframe ti�tj,
there is a triple x such as either px P Dti ^ x R Dtj q or px R Dti ^ x P Dtj q.

Definition 3 (Changeset). Let us assume that D is an evolving RDF dataset.
and Dti is the version of D at time ti. A changeset which is denoted by δpDti�tj q
shows the difference of two versions of an evolving RDF dataset in a partic-
ular timeframe ti � tj, while ti tj. The changeset is formally defined as
δpDti�tj q � δpDti�tj q

�, δpDti�tj q
� ¡ where,

7 http://www.w3.org/TR/rdf11-concepts/
8 A URI is a string of characters used as unique identifier for a Web resource.
9 A generalization of URIs enabling the use of international character sets.

http://www.w3.org/TR/rdf11-concepts/

– δpDti�tj q
� is a set of triples which have been added to the version Dtj in

comparison to the version Dti .
– δpDti�tj q

� is a set of triples which have been deleted from the version Dtj

in comparison to the version Dti .

Example 1 (Changesets). Let the following files are found as changesets at time
ti from the source and target datasets.
#(A). Deleted triples
#__

#(B). Added triples
dbr:Adrian_Sanders rdf:type dbo:Agent;

foaf:name Adrian Sanders;
dbp:birthYear 1959;
owl:sameAs Freebase:Adrian Sanders;
owl:sameAs http://wikidata.org/entity/Q479047.

Listing 1.2: Source changeset, (A)=δpSti�tj q� , and (B) = δpSti�tj q
�

#(A) Deleted triples
dbr:Adrian_Sanders dbp:spouse Alison Sanders;

owl:sameAs Freebase:Adrian Sanders.
#__

#(B) Added triples
dbr:Adrian_Sanders rdf:type dbo:MemberOfParliment;

foaf:name Adrian Sanders;
foaf:name Sanders, Adrian;
owl:sameAs Freebase:Adrian Sanders;
owl:sameAs http://yago-knowledge.org/resource/Adrian_Sanders.

Listing 1.3: Target changeset, (A)= δpTti�tj q
� , and (B) = δpTti�tj q

�

Definition 4 (Synchronized Dataset). Two evolving datasets, Dp1q and Dp2q,
are said to be synchronized (or in sync) iff one of the following is true at a given
time tk: i) Dp1q

tk
� D

p2q
tk

, ii) Dp2q
tk

� D
p1q
tk

, or iii) Dp1q
tk

� D
p2q
tk

.

4 Problem Statement

The core of the co-evolution concept relies on the mutual propagation of changes
between the source and target datasets in order to keep the datasets in sync.
Thus, from time to time, the target dataset and the source dataset have to ex-
change the changesets and then update the local repositories. Updating a dataset
with changesets from the source dataset might cause inconsistencies. Our co-
evolution strategy aims at dealing with changesets from either the source or
target dataset and provide a suitable reconciliation strategy. Various strategies
can be employed for synchronising datasets. In this section we provide require-
ments and formal definitions for guiding the co-evolution process.

4.1 Synchronization

In the beginning the target dataset is derived (as a slice or excerpt) from the
source dataset, thus the following requirement always holds.

Requirement 1 (Initial Inclusion) At the initial time t0, the target dataset
T is a subset of the source dataset S: Tt0 � St0 , and thus source and target
datasets are in sync.

After some time, both source and target datasets evolve. At time ti, the target
dataset is Tti � Tt0 Y δpTt0�tiq and the source dataset is Sti � St0 Y δpSt0�tiq.

Requirement 2 (Required Synchronization) At time tj, a synchronization
of both datasets is required iff source and target datasets were synchronised at
time ti, and the changesets applied to source and target datasets differ, i.e.
δpSti�tj q � δpTti�tj q.

4.2 Conflict

When we synchronize the target Tti with source Sti , there may exist triples which
have been changed in both datasets. These changed triples may be conflicting.

Definition 5 (Potential Conflict). Let us assume that a synchronization is
required for a given time slot ti � tj. δpSti�tj q is the changeset of the source
dataset and δpTti�tj q is the changeset of the target dataset. A potential conflict
is observed when there are triples x1 � ps, p, o1q P Stj ^ x2 � ps, p, o2q P
δpTti�tj q ^ x2 R Stj � Sti Y δpSti�tj q with o1 � o2.

Taking o1 � o2 as an indication for a conflict is subjective; in the sense that
the characteristics of the involved property p influences the decision. Consider
two triples ps, p, o1q and ps, p, o2q. If p is a functional data type property, two
triples are conflicting iff the object values o1 and o2 are not equal. However, if
the property p is a functional object property, these two triples are conflicting if
the objects are or can be inferred to be different (e.g. via owl:differentFrom).
Another property which needs special consideration is rdf:type. For this prop-
erty it is necessary to check whether o1 and o2 belong to disjoint classes. Only
then these triples would be conflicting. For example, s1 rdf:type Person and
s1 rdf:type Athlete are not conflicting if Athlete is a subclass of Person (i.e.
not disjoint). Thus, the process of detecting conflicts is considering the inherent
characteristics of the involved property.

4.3 Synchronization Strategies

In the following, we list possible strategies for synchronization. We consider
the time frame ti � tj , where in the time ti, the source and target datasets
are synchronised and until time tj , both source and target datasets have been
evolving independently. Before applying synchronization, the state of the source
dataset is Stj � Sti Y δpSti�tj q and the target dataset is Ttj � Tti Y δpTti�tj q.

Strategy I: This synchronization strategy prefers the source dataset and ig-
nores all local changes on the target dataset; thus, the following requirement is
necessary.

Requirement 3 (Inclusion for synchronization) At any given time tj, af-
ter synchronising using selected strategy, the target dataset should be a subset of
the source dataset, i.e. Ttj � Stj .

Therefore, the target dataset ignores all triples tx |x R δpSti�tj q ^ x P
δpTti�tj qu and adds only the triples ty | y P δpSti�tj qu. After synchronization,
the state of source dataset is Stj � Sti Y δpSti�tj q and the state of the target
dataset is Ttj � Tti Y δpSti�tj q. Thus, the requirement 3 is met and Ttj � Stj .
A special case of this strategy is when the target is not evolving.

Example 2. Applying strategy I for synchronization on Example 1 gives the fol-
lowing triples:
dbr:Adrian_Sanders rdf:type dbo:Politician;

rdf:type dbo:Agent;
foaf:name Adrian Sanders;
dbp:spouse Alison Sanders;
dbp:birthYear 1959-01-01 (xsd:date);
dbp:birthYear 1959;
owl:sameAs Freebase:Adrian Sanders;
owl:sameAs http://wikidata.org/entity/Q479047.

Strategy II: With this strategy, the target dataset is not synchronized with
the source dataset and keeps all its local changes. Thus, the target dataset is not
influenced by any change from the source dataset and evolves locally. After syn-
chronization, at time tj , the state of the target dataset is Ttj � Tti Y δpTti�tj q,
and the state of the source dataset is Stj � Sti Y δpSti�tj q. It allows for syn-
chronized replicas only if data is deleted. There is no synchronization if triples
in the target dataset are updated or new triples are included.
Example 3. Applying strategy II for synchronization on Example 1 gives the
following triples:
dbr:Adrian_Sanders rdf:type dbo:Politician;

rdf:type dbo:MemberOfParliment;
foaf:name Adrian Sanders;
foaf:name Sanders, Adrian;
dbp:birthYear 1959-01-01 (xsd:date);
owl:sameAs http://yago-knowledge.org/resource/Adrian_Sanders.

Strategy III: This synchronization strategy respects the changesets of both
source and target datasets except that it ignores conflicting triples.

Here, the set of triples in which conflicts occur is X � tx1 � ps, p, o1q P
Stj ^ x2 � ps, p, o2q P δpTti�tj q ^ x2 R Stj with o1 � o2u

10. With Strategy
10 Set of conflicting triples selected after considering the inherent characteristics of the

involved property. In rest of the paper, we say potential conflict a conflict, unless
otherwise specified.

III, the set of conflicting triples X is removed from the target dataset while
the source changeset δpSti�tj q and the target changeset δpTti�tj q are added.
After synchronization, the state of the source dataset is Stj � pSti Y δpSti�tj qY
δpTti�tj qqzX and the state of the target dataset is Ttj � pTti Y δpTti�tj q Y
δpSti�tj qqzX. Thus, requirement 3 is met.

Example 4. Applying strategy III for synchronization on Example 1 gives the
following triples:
dbr:Adrian_Sanders rdf:type dbo:Politician;

rdf:type dbo:Agent;
rdf:type dbo:MemberOfParliment;
owl:sameAs http://wikidata.org/entity/Q479047;
owl:sameAs http://yago-knowledge.org/resource/Adrian_Sanders.

Strategy IV: This synchronization strategy also respects the changesets of
both source and target datasets. In addition, it includes conflicting triples after
resolving the conflicts.

Here, we consider the set of triples in which conflict occurs as X � tx1 �
ps, p, o1q P Stj^x2 � ps, p, o2q P δpTti�tj q^x2 R Stj with o1 � o2u. The conflicts
over these triples should be resolved. It can be resolved using some resolution
policy as described in [4]. Table 1 shows a list of various policies for resolving the
conflicts. Conflict resolution results in a new set of triples called Y whose triples
are originated from X but their conflicts have been resolved. Then, this new set
(i.e. Y) is added to the both source and target datasets. After synchronization,
the state of the source dataset is Stj � ppSti Y δpSti�tj qY δpTti�tj qqzXqYY and
the state of target dataset is Ttj � ppTti Y δpTti�tj q Y δpSti�tj qqzXq Y Y . Thus,
requirement 3 is met.

Example 5. Applying strategy IV for synchronization on Example 1 while re-
solving the conflicts using function ’Any’ gives the following triples:
dbr:Adrian_Sanders rdf:type dbo:Politician;

rdf:type dbo:Agent;
rdf:type dbo:MemberOfParliment;
foaf:name Adrian Sanders;
foaf:name Sanders, Adrian;
dbp:birthYear 1959-01-01 (xsd:date);
owl:sameAs http://wikidata.org/entity/Q479047;
owl:sameAs http://yago-knowledge.org/resource/Adrian_Sanders.

5 Approach

Our approach allows a user to choose a synchronization strategy (as presented
in Section 4.3). Below, we describe the status of the source and target datasets
after applying each synchronization strategy (see algorithm 1).

Function CDR is presented in algorithm 2 which (i) identifies conflicts for the
case of strategy III and strategy IV, and then (ii) resolves conflicts only in case
of strategy IV. Our approach considers triple-based operations, explained below

Table 1: Conflict resolution policies and functions
Category Policy Function Type Description

Deciding

Roll the dice Any A Pick random value.
Reputation Best source A Select the value from the preffered dataset.
Cry with
the wolves Global vote A Select the frequently occurring value for the re-

spective attribute among all entities.
Keep up-to-
date

First* A Select the first value in order.
Latest* A Select the most recent value.

Filter
Threshold* A Select the value with a quality score higher than

a given threshold.
Best* A Select the value with highest quality score.
TopN* A Select the N best values.

Mediating Meet in the
middle

Standard deviation,
variance N Apply the corresponding function to get value.
Average, median N Apply the corresponding function to get value.
Sum N Select the sum of all values as the resultant.

Conflict
ignorance Pass it on Concatenation A Concatenate all the values to get the resultant.

Conflict
avoidance

Take the in-
formation

Longest S, C, T Select the longest (non-NULL) value.
Shortest S, C, T Select the shortest (non-NULL) value.
Max N Select the maximum value from all.
Min N Select the minimum value from all.

Trust your
friends

Choose de-
pending* A Select the value that belongs to a triple having a

specific given value for another given attribute.
Choose corre-
sponding A Select the value that belongs to a triple whose

value is already chosen for another given attribute.
Most com-
plete* A

Select the value from the dataset (source or target)
that has fewest NULLs across all entities for the
respective attribute.

* - requires metadata, A - All, S - String, C - Category (i.e., domain values have no order), T -
Taxonomy (i.e., domain values have semi-order), N - Numeric.

using seven cases, to identify conflicts. Consider three triples x1 � ps, p, o1q,
x2 � ps, p, o2q, and x3 � ps, p, o3q which are in conflict with each other x1 P
δpSti�tj q ^ x2 P δpTti�tj q ^ x3 P tδpSti�tj q ^ δpTti�tj qu ^ o1 � o2 � o3. In the
following we present seven cases of evolution causing conflicts. For the first three
cases (I-III), the conflict resolution is straightforward. But for the cases IV-VII,
we have to employ a conflict resolution policy to decide about triples x1 and x2:

– Case I: x1 is added to Ttj if x1 is added by the source dataset and x2 is
deleted from the target dataset: x1 P δpSti�tj q

� ^ x2 P δpTti�tj q
�.

– Case II: x1 is added to Ttj if x1 is modified by the source dataset and x2
is deleted from the target dataset: x1 P δpSti�tj q

� ^ x2 P δpSti�tj q
� ^ x2 P

δpTti�tj q
�.

– Case III: x2 is added to Stj if x1 is deleted from the source dataset and x2
is modified in the target dataset: x1 P δpSti�tj q

� ^ x2 P δpTti�tj q
� ^ x1 P

δpTti�tj q
�.

– Case IV: if the triple x1 is added to the source dataset and x2 is added to
the target dataset: x1 P δpSti�tj q

� _ x2 P δpTti�tj q
�.

– Case V: if x3 is modified by both source and target datasets: x2 P δpSti�tj q
�^

x3 P δpSti�tj q
� ^ x1 P δpTti�tj q

� ^ x3 P δpTti�tj q
�.

– Case VI: if x1 is modified by the target dataset: x1 P δpSti�tj q
� ^ x2 P

δpTti�tj q
� ^ x1 P δpTti�tj q

�.
– Case VII: if x1 is modified by the source dataset: x2 P δpSti�tj q

� ^ x1 P
δpSti�tj q

� ^ x1 P δpTti�tj q
�.

Data: Sti , Tti , δpTti�tj q, δpSti�tj q, strategy
Result: Stj , Ttj

1 switch strategy do
2 /* Synchronise with the source and ignore local changes */
3 case Strategy I
4 Ttj

:� Tti
Y δpSti�tj

q ;
5 Stj

:� Stj
;

6 end
7 /* Do not synchronise with the source and keep local changes */
8 case Strategy II
9 Ttj

:� Tti
Y δpTti�tj

q ;
10 Stj

:� Sti
Y δpSti�tj

q ;
11 end
12 /* Synchronise with the source and target datasets and ignore conflicts */
13 case Strategy III
14 Stj

, Ttj
:� CDRpδpSti�tj

q, δpTti�tj
q, Tti

, falseq ;
15 end
16 /* Synchronise with the source and target datasets and resolve the conflicts */
17 case Strategy IV
18 Stj

, Ttj
:� CDRpδpSti�tj

q, δpTti�tj
q, Tti

, trueq ;
19 end
20 endsw

Algorithm 1: Updating the source and target datasets by the chosen
synchronization strategy.

Algorithm 2 shows the pseudocode of the procedure for updating the source
and target datasets at the end of each timeframe. The function resolveConflict

identifies operations described in Case I-VII. In addition, for the cases IV-VII,
it resolves conflicts based on the type of involved predicate. As we discussed
earlier, whether a conflict between two triple exists depends heavily on the type
of property. Consider two triples ps, p, o1q and ps, p, o2q, if p is rdfs:label, we
measure the similarity between o1 and o2 using the Levenshtein distance. We pick
both values of rdfs:label if their similarity is below a certain threshold otherwise
we treat them as conflicting. The function resolveConflict identifies operations
containing deleted in the source, deleted/added/modified in the target dataset.
In case of deleted in the source dataset and added/modified by the target dataset,
it returns a triple to be added in Ttj otherwise null.

Figure 3 illustrates algorithm 2 for updating the target dataset Tti . We choose
the synchronization strategy IV for the synchronization task. In the first step, we
use a tree structure to identify conflicts for the triples in δpSti�tj q�. Consider the
tree structure (a) in step1 for the triple pdbr : Adrian_Sanders, rdf : type, dbo :
Agentq. We find different object values for pdbr : Adrian_Sanders, rdf : typeq
in δpSti�tj q

�, δpTti�tj q
�, and Tti . Then, we identify the triple based opera-

tion. For example, if we find the object value dbo : Agent in δpSti�tj q
� ,

dbo : MemberOfParliment in δpTti�tj q
�, and dbo : Politician in Tti , it rep-

resents case IV of addition by both source and target. Thus, this case repre-
sents a potential conflicting triple. We check if the values in Tti , δpSti�tj q� and
δpTti�tj q

� are disjoint for predicate rdf:type. As dbo : Politician, dbo : Agent,
and dbo : MemberOfParliment are not disjoint, we pick all these values.

Data: Sti , Tti , δpTti�tj q, δpSti�tj q, conflictresolution
Result: Stj , Ttj

1 Ttj
� φ ;

2 Stj
� φ ;

3 temp � φ ;
4 /* step1 */

5 for all triples x1 � ps1, p1, o1q P δpSti�tj
q� do

6 /* finding triples which are in conflict with x1 */

7 X � tx2 � ps1, p1, Node.ANY q P δpSti�tj
q� Y δpTti�tj

q� Y δpTti�tj
q� Y Tti

u ;
8 if X �� φ then
9 temp � tempY x1 ;

10 end
11 else
12 x = resolveConflict(x1, X) ;
13 temp � tempY x ;
14 end
15 end
16 /* step2 */

17 Tti
:� Tti

zδpTti�tj
q� Y δpSti�tj

q�;
18 Sti

:� Sti
zδpTti�tj

q� Y δpSti�tj
q� ;

19 /* step3 */

20 temp :� tempY δpSti�tj
q� Y δpTti�tj

q� ;
21 /* Updating the target dataset */
22 Ttj

:� Tti
Y temp ;

23 /* Updating the source dataset */
24 Stj

:� Sti
Y temp ;

Algorithm 2: CDR algorithm: Conflict Detection and Resolution

Now, consider the tree structure (b) in step1 for triple pdbr : Adrian_Sanders,
owl : sameAs, http : {{wikidata.org{entity{Q479047q. It also represents case IV
of addition by both source and target. The triple pdbr : Adrian_Sanders, owl :
sameAs, Freebase : AdrianSandersq is added by source but deleted by target.
Considering the target as more customized dataset, we give preference to target
change. The tree structure (c) in step1 for the triple pdbr : Adrian_Sanders, dbp :
birthY ear, 1959q. It is also handled in case IV. As dbp:birthYear is functional
property, we select only one value among already existing value and the new
value using resolution function ’Any’.

Furthermore, the user has the opportunity to adopt the manual or automatic
selection of resolution functions. The resolution function is oriented to the type
of predicates. The list of supported resolution functions is shown in Table 1.
For automatic selection of conflict resolution functions for predicates, we check
attributes of predicates (e.g., type, cardinality). Based on the usage analysis of
different functions in [4], we prefer functions such as first, longest, and maximum
for resolving conflicts. For instance, we prefer function longest for strings to avoid
loss of information. For numeric data types, we prefer function max to keep the
up-to-date value. For URIs, we pick the first value.

Step
1

Step
3

Triples in target changeset

Step
1

 Triples removed

(a) case IV: non-disjoint
values for rdf:type

T
tj

dbr:Adrian_Sanders rdf:type dbo:Agent;
 foaf:name Adrian Sanders;
 dbp:birthYear 1959;
 owl:sameAs Freebase:Adrian Sanders;
 owl:sameAs http://wikidata.org/entity/Q479047.

dbr:Adrian_Sanders dbp:spouse Alison Sanders;
 owl:sameAs Freebase:Adrian Sanders.

dbr:Adrian_Sanders rdf:type dbo:Politician;
 dbp:spouse Alison Sanders;
 dbp:birthYear 1959-01-01 (xsd:date).

dbr:Adrian_Sanders rdf:type dbo:MemberOfParliment;
 foaf:name Adrian Sanders;
 foaf:name Sanders, Adrian;
 dbo:birthPlace dbr:Paignton;
 owl:sameAs Freebase:Adrian Sanders;
 owl:sameAs http://yago-knowledge.org/resource/Adrian_Sanders .

dbr:Adrian_Sanders rdf:type dbo:Agent;
 rdf:type dbo:Politician;
 rdf:type dbo:MemberOfParliment;
 foaf:name Adrian Sanders;
 foaf:name Sanders, Adrian;
 dbo:birthPlace dbr:Paignton
 dbp:birthYear 1959-01-01 (xsd:date);
 owl:sameAs http://wikidata.org/entity/Q479047;
 owl:sameAs http://yago-knowledge.org/resource/Adrian_Sanders .

T
ti

Step
2

Freebase:Adrian
Sanders;

http://wikidata.org/
entity/Q479047

http://yago-knowledge
.org/resource/Adrian_Sanders

dbr:Adrian_Sanders,
rdf:type

dbo:Agent

T
t i

(S
ti-tj

)+δ

dbo:Member
OfParliment

dbo:Politician

dbr:Adrian_Sanders,
dbp:birthYear

1959

1959-01-01
(xsd:date)

dbr:Adrian_Sanders,
owl:sameAs

dbr:Adrian_Sanders,
foaf:name

Adrian Sanders

Sanders, Adrian

(T
ti-tj

)+δ
(T

ti-tj
)+δ

(S
ti-tj

)+δ

(S
ti-tj

)+δ (T
ti-tj

)-δ

(S
ti-tj

)+δ

T
t i

(T
ti-tj

)+δ

(T
ti-tj

)+δ(S
ti-tj

)+δ

(b) case IV: target change is
preffered over source change

(c) case IV: pick only
one value due to
functional property

(d) case IV: pick value added
by both datasets and then
pick any one out of two
different values Execution of Algorithm2

(S
ti-tj

)+δ

(T
ti-tj

)-δ

(T
ti-tj

)+δ Triples in source changeset

Triples in target changeset Triples in synchronised target

Triples in initial target

Fig. 3: Execution of algorithm 2 to synchronize Tti with Sti

6 Evaluation

In order to assess the discussed approaches for synchronization and conflict iden-
tification/resolution, we prepare a testbed based on a slice of DBpedia using the
following SPARQL query.
CONSTRUCT WHERE {

?s a Politician ;
foaf:name ?name ;
dbo:nationality ?nationality ;
dbo:abstract ?abstract ;
dbp:party ?party ;
dbp:office ?office

OPTIONAL { ?s foaf:depiction ?depiction }
}

The extracted dataset is used as the initial source and target dataset. Then,
we collect a series of changesets from DBpedia-live published from September
01, 2015 to October 31, 2015 using iRap [8]. We found a total of 304 changesets.
These changesets are leveraged to simulate updates of the source and target
datasets. We randomly select a total of 91 addition parts of changesets and
altered values of their triples. Table 2 provides the number of triples of ini-
tial target, source and their associated changesets before synchronization. Ini-
tially, we have 200082 triples with 163114 unique objects in Tti where ti �
September01, 2015.

Table 2: Number of triples in the source, target, and changesets for a given timeframe
Sti

Tti
δpSti�tj

q� δpSti�tj
q� δpTti�tj

q� δpTti�tj
q�

200082 200082 948 160 11725 81

Given a timeframe ti � tj
11, the goal is to synchronize source and tar-

get datasets. To do that, we define five different scenarios. In four scenarios,
we apply subsequently the strategy (I-IV) over all predicates of the changesets
and measure the performance. For the last scenario, we apply two strategies
in a combined form on the changesets where we select strategy IV for predi-
cate dbp:office, and strategy I for predicates dbp:party, dbo:nationality, rdf:type,
foaf:name, dbo:abstract, and foaf:depiction. For all predicates using strategy IV,
we select the resolution function ’any’. Table 3 provides the number of triples
produced as a result of synchronizing Sti and Tti in each scenario. The updated
changesets are sent back to the source and target for synchronization purpose.
The number of conflicting triples found in scenarios 3, 4, and 5 are shown in
Table 3.

Table 3: Results of synchronization
Scenario δpSti�tj

q� δpSti�tj
q� δpTti�tj

q� δpTti�tj
q� Conflicting triples RunTime (seconds)

1 0 0 948 160 - 0.0
2 0 0 11725 81 - 0.0
3 11682 81 12060 81 343 0.5
4 11800 195 12186 81 343 2.0
5 5227 131 6081 121 186 0.2

The running time of the five different scenarios is also shown in Table 3
(These times are recorded only for the execution of synchronization part and do
not include data loading time). Evaluation showed that strategy IV (performed
in scenario IV) needs more time even from strategy III (performed in scenario
III) where all conflicts were detected but not resolved.

Synchronization influences data quality specially in terms of data consis-
tency. To evaluate the usefulness of the synchronization approach, we use three
data quality metrics i.e. (1) completeness, (2) conciseness, and (3) consistency
described as follows:

1. Completeness refers to the degree to which all required information is present
in a dataset [24]. We measure it for source and target changesets to identify
which helps more in completeness. We measure it using

Number of unique triples in synchronised dataset

Number of unique triples in pinitial dataset Y changesetq

2. Consistency states that the values should not be conflicting. We measure it
using

Number of non-conflicting triples in synchronized dataset
Number of triples in pinitial dataset Y source and target changesetsq

3. Conciseness measures the degree to which the dataset does not contain re-
dundant information using

Number of unique triples in dataset

Number of all triples in dataset
11 09/01/2015-10/31/2015.

Conciseness (before synchronization) is computed using initial target dataset
and source and target changesets. We compute these metrics for all the assumed
scenarios, the results are shown in Table 4. For our sample case study, we found
almost equal contribution of both source and target changesets in reducing the
missing information. However, we found minimum 163191 number of unique
objects using strategy II and maximum 163591 number of unique objects using
strategy IV. Please note that strategy 1 and strategy II may not necessarily
increase the number of unique triples as they do not consider about conflicts.
It can be observed by analyzing the scenario 1 where the role of source change-
sets in completeness is 99% which is less than the target contribution. Through
evaluation, we found significant increase in conciseness for all strategies.

Table 4: Synchronization effect on completeness, consistency, and conciseness
Scenario Completeness

(source)
Completeness
(target) Consistency

Conciseness
(before syn-
chronization)

Conciseness
(after synchro-
nization)

1 99% 100% - 77% 81%
2 99% 99% - 77% 81%
3 99% 100% 94% 77% 81%
4 99% 100% 94% 77% 81%
5 99% 100% - 77% 81%

7 Related Work

Related work includes synchronization of semantic stores for concurrent updates
by autonomous clients [1], synchronization of source and target [22], replication
of partial RDF graphs [19], ontology change management [12], and conflict res-
olution for data integration [3–5, 11, 13, 14, 16, 17, 21]. We discuss related work
here along the dimensions change management and conflict resolution.

7.1 Change management
Efficient synchronization of semantic stores is challenging due to the factors,
scalability and number of autonomous participants using replica. C-Set [1] is a
Commutative Replicated Data Type (CRDT) that allows concurrent operations
to be commutative and thus, avoids other integration algorithms for consistency.
The approach, proposed in [19], allows to replicate part of an RDF graph on
clients. Clients can apply offline changes to this partial replica and write-back to
original data source upon reconnection. Table 5 provides a comparative analysis
of change management approaches used for synchronization.

A few surveyed approaches [2, 12] are related to ontological change manage-
ment.In [12], a framework is developed for ontology change management and
tested for RDF ontologies. This framework allows to design ontology evolution
algorithms. In [2], an approach for the versioning and evolution of ontologies,
based on RDF data model, is presented. It considers atomic changes such as ad-
dition or deletion of statement and then aggregates them to compound changes
to form a change hierarchy. This change hierarchy allows human reviewers to
analyze at various levels of details.

7.2 Conflict resolution

For relational databases, there is much work on inconsistency resolution [3,4,16].
The Humboldt Merger [3], extension to SQL with a FUSE BY statement, re-
solves conflicts at runtime. Fusionplex [16] integrates data from heterogeneous
data sources and resolves inconsistencies during data fusion. For fusion, it uses
parameters such as user-defined data utility, threshold of acceptance, fusion func-
tions, and metadata. [4] classifies conflict resolution strategiesinto three classes:
ignorance, avoidance, and resolution. Conflict ignorance strategies are not aware
of conflicts in the data. Conflict avoidance strategies are aware of whether and
how to handle inconsistent data. Conflict resolution strategies may use meta-
data to resolve conflicts. These can be divided into deciding and mediating. A
deciding strategy chooses value from already existing values whereas a mediating
strategy may compute a new value.

Sieve Fusion Policy Learner [5] uses a gold standard dataset to learn optimal
fusion function for each property. The user specifies possible conflict resolution
strategies from which the learning algorithm selects the one that gives maximum
results within error threshold with respect to the gold standard.

Most relevant approaches to our proposed work are Sieve [13] - part of Linked
Data integration framework (LDIF) [21], data fusion algorithm [14] for OD-
CleanStore [11], RDFSync [22], and Col-graph [10]. Our approach differs from
the previous ones in the scope of the problem (see Figure 4). RDFSync performs
synchronization of two datasets by merging both graphs, deleting information
which is not known by source, or making the target equal to source. In contrast
to RDFSync, our co-evolution approach allows merging of both graphs while ig-
noring or resolving conflicts and keeping only source or target changes. Col-graph
deals with consistent synchronization of replicas and does not tackle conflicts.

Sieve and ODCS are data fusion approaches and thus, are applicable where
described data have different schemata. In contrast to both, co-evolution ap-
proach is applicable where described data have same schemata. Both approaches
define conflicts as RDF triples sharing same subject/predicate with inconsistent
values for objects. Sieve uses quality scores to resolve data while, ODCS pro-
duces quality scores of resolved data and keeps name of dataset from where the
resolved value belongs. We extend the conflict definition by further considering
the predicate type, as discussed earlier (see Definition 5).

Table 5: Synchronization approaches
Approach Synchronization Bi-directional Participants Conflict handling*

C-Set X X n x
RDFSync X x source, target x
Col-graph X X n x

[14] X back to source n x
Co-evolution X X source, target X

* - Triple level conflicts according to Definition 5

Linked data
integration

Conflict
resolution

Data fusion Data replication

SynchronizationSieve:LDIF, ODCS

Col-graph, RDFSync
Co-evolution

Fig. 4: How co-evolution fits with state-of-the-art

8 Conclusion and Future Work

In this paper we presented an approach to deal with co-evolution which refers
to mutual propagation of the changes between a replica and its origin dataset.
Using the co-evolution process, we address synchronization and conflict resolu-
tion issues. We demonstrated the approach using formal definitions of all the
concepts required for realizing co-evolution of RDF datasets and implemented it
using different strategies. We evaluated the approach using data quality metrics
completeness, conciseness, and consistency. A thorough evaluation of the ap-
proach, using DBpedia changesets, indicates that our method can significantly
improve the quality of dataset. In the future, we will extend the concept of con-
flict resolution at schema level. For example, renaming a class invalidates all
triples that belong to it in a dataset. Further, we will evaluate the scalability
and performance of our proposed approach using a benchmark dataset.

Acknowledgements. This work is supported in part by the European Union’s
Horizon 2020 programme for the projects BigDataEurope (GA 644564) and
WDAqua (GA 642795). Sidra Faisal is supported by a scholarship of German
Academic Exchange Service (DAAD).

References

1. Aslan, K., Molli, P., Skaf-Molli, H., Weiss, S.: C-set: A commutative replicated
data type for semantic stores. In: 4th Int. Workshop on REsource Discovery (RED)
(2011)

2. Auer, S., Herre, H.: A versioning and evolution framework for rdf knowledge bases.
In: 6th Int. Conf. on Perspectives of Systems Informatics (PSI). pp. 55–69 (2006)

3. Bilke, A., Bleiholder, J., Naumann, F., Böhm, C., Draba, K., Weis, M.: Automatic
data fusion with hummer. In: 31st Int. Conf. on Very Large Data Bases (VLDB)
(2005)

4. Bleiholder, J., Naumann, F.: Data fusion and conflict resolution in integrated infor-
mation systems. In: Int. Workshop on Information Integration on the Web (2006)

5. Bryl, V., Bizer, C.: Learning conflict resolution strategies for cross-language
wikipedia data fusion. In: 23rd Int. Conf. on World Wide Web (WWW) (2014)

6. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.: SPARQL web-
querying infrastructure: Ready for action? In: The Semantic Web - ISWC 2013

- 12th International Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part II. pp. 277–293 (2013)

7. Endris, K.M., Faisal, S., Orlandi, F., Auer, S., Scerri, S.: Interest-based RDF up-
date propagation. In: The Semantic Web - ISWC 2015 - 14th International Seman-
tic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part
I. pp. 513–529 (2015)

8. Endris, K.M., Faisal, S., Orlandi, F., Auer, S., Scerri, S.: irap - an interest-based
rdf update propagation framework. In: ISWC 2015 Posters and Demonstrations
Track co-located with the 14th Int. Semantic Web Conf. (ISWC) (2015)

9. Feigenbaum, L., Williams, G., Clark, K., Torres, E.: SPARQL 1.1 protocol (2013),
http://www.w3.org/TR/sparql11-protocol/

10. Ibanez, L.D., Skaf-Molli, H., Molli, P., Corby, O.: Col-graph: Towards writable and
scalable linked open data. In: 13th Int. Semantic Web Conf. (ISWC) (2014)

11. Knap, T., Michelfeit, J., Daniel, J., Jerman, P., Rychnovský, D., Soukup, T.,
Nečaský, M.: Odcleanstore: A framework for managing and providing integrated
linked data on the web. In: Web Information Systems Engineering (WISE) (2012)

12. Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V.: Ontology evolu-
tion: A framework and its application to RDF. In: Joint ODBIS-SWDB Workshop
on Semantic Web, Ontologies, Databases (2007)

13. Mendes, P.N., Müleisen, H., Bizer, C.: Sieve: Linked data quality assessment and
fusion. In: Joint EDBT-ICDT Workshops. pp. 116–123 (2012)

14. Michelfeit, J., Knap, T., Nečaský, M.: Linked data integration with conflicts. Web
Semantics (2014)

15. Montoya, G., Skaf-Molli, H., Molli, P., Vidal, M.E.: Federated sparql queries pro-
cessing with replicated fragments. In: The Semantic Web - ISWC 2015 - 14th In-
ternational Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I (2015)

16. Motro, A., Anokhin, P.: Fusionplex: Resolution of data inconsistencies in the inte-
gration of heterogeneous information sources. Information fusion 7(2) (2006)

17. Paton, N.W., Christodoulou, K., Fernandes, A.A.A., Parsia, B., Hedele, C.: Pay-
as-you-go data integration for linked data: Opportunities, challenges and architec-
tures. In: 4th Int. Workshop on Semantic Web Information Management (2012)

18. Saleem, M., Ngomo, A.C.N., Parreira, J.X., Deus, H.F., Hauswirth, M.: Daw:
Duplicate-aware federated query processing over the web of data. In: 12th Int.
Semantic Web Conf. (ISWC) (2013)

19. Schandl, B.: Replication and versioning of partial RDF graphs. In: 7th Int. Conf.
on The Semantic Web. pp. 31–45 (2010)

20. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: The Semantic Web - ISWC 2014. pp.
245–260 (2014)

21. Schultz, A., Matteini, A., Isele, R., Bizer, C., Becker, C.: Ldif – linked data inte-
gration framework. In: 2nd Int. Workshop on Consuming Linked Data (2011)

22. Tummarello, G., Morbidoni, C., Bachmann-Gmür, R., Erling, O.: Rdfsync: Effi-
cient remote synchronization of RDF models. In: 6th Int. The Semantic Web and
Second Asian Conf. on Asian Semantic Web Conference (ISWC-ASWC) (2007)

23. Verborgh, R., Hartig, O., Meester, B.D., Haesendonck, G., Vocht, L.D., Sande,
M.V., Cyganiak, R., Colpaert, P., Mannens, E., de Walle, R.V.: Querying datasets
on the Web with high availability. In: ISWC. pp. 180–196 (2014)

24. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked open data: A survey. Semantic Web Journal (2015)

http://www.w3.org/TR/sparql11-protocol/

	Co-Evolution of RDF Datasets
	Repository Citation

	tmp.1492029143.pdf.gU8Rr

