1,314 research outputs found
Marine Biotechnology: A New Vision and Strategy for Europe
Marine Board-ESF The Marine Board provides a pan-European platform for its member organisations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organisations (both research institutes and research funding agencies) towards the development of a common vision on the research priorities and strategies for marine science in Europe. In 2010, the Marine Board represents 30 Member Organisations from 19 countries. The Marine Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the Marine Board serves its Member Organisations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European Marine Research Area
Induced defences in marine and freshwater phytoplankton: a review
Many organisms have developed defences to avoid predation by species at higher trophic levels. The capability of primary producers to defend themselves against herbivores affects their own survival, can modulate the strength of trophic cascades and changes rates of competitive exclusion in aquatic communities. Algal species are highly flexible in their morphology, growth form, biochemical composition and production of toxic and deterrent compounds. Several of these variable traits in phytoplankton have been interpreted as defence mechanisms against grazing. Zooplankton feed with differing success on various phytoplankton species, depending primarily on size, shape, cell wall structure and the production of toxins and deterrents. Chemical cues associated with (i) mechanical damage, (ii) herbivore presence and (iii) grazing are the main factors triggering induced defences in both marine and freshwater phytoplankton, but most studies have failed to disentangle the exact mechanism( s) governing defence induction in any particular species. Induced defences in phytoplankton include changes in morphology (e.g. the formation of spines, colonies and thicker cell walls), biochemistry (such as production of toxins, repellents) and in life history characteristics (formation of cysts, reduced recruitment rate). Our categorization of inducible defences in terms of the responsible induction mechanism provides guidance for future work, as hardly any of the available studies on marine or freshwater plankton have performed all the treatments that are required to pinpoint the actual cue(s) for induction. We discuss the ecology of inducible defences in marine and freshwater phytoplankton with a special focus on the mechanisms of induction, the types of defences, their costs and benefits, and their consequences at the community level
Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development
Diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal, derive from the oxidation of fatty acids and have cytotoxic and anticancer effects. PUAs, tested separately, induce malformations in sea urchin Paracentrotus lividus embryos. Decadienal induces the worst malformations and lowest survival rates. Interestingly, decadienal, heptadienal and octadienal place in motion several genes to counteract their negative effects. To date, no studies are available reporting on the effects of PUA mixtures on marine invertebrates. Here we test binary and ternary mixtures on embryonic development of P. lividus. Our findings demonstrate that mixtures of PUAs act (i) at morphological level in synergistic way, being much more severe compared to individual PUAs; (ii) at molecular level also reveal an additive effect, affecting almost all fifty genes, previously tested using individual PUAs. This study is relevant from an ecological point of view since diatoms are a major food source for both pelagic and benthic organisms. This work opens new perspectives for understanding the molecular mechanisms that marine organisms use in reacting to environmental natural toxin mixtures such as diatom PUAs
First Morphological and Molecular Evidence of the Negative Impact of Diatom-Derived Hydroxyacids on the Sea Urchin Paracentrotus lividus.
Oxylipins (including polyunsaturated aldehydes PUAs, hydoxyacids and epoxyalcohols) are the end-products of a lipoxygenase/hydroperoxide lyase metabolic pathway in diatoms. To date very little information is available on oxylipins other than PUAs, even though they represent the most common oxylipins produced by diatoms. Here, we report, for the first time, on the effects of two hydroxyacids, 5-and 15-HEPE, which have never been tested before, using the sea urchin Paracentrotus lividus as a model organism. We show that HEPEs do induce developmental malformations but at concentrations higher when compared to PUAs. Interestingly, HEPEs also induced a marked developmental delay in sea urchin embryos, which has not hitherto been reported for PUAs. Recovery experiments revealed that embryos do not recover following treatment with HEPEs. Finally, we report the expression levels of 35 genes (involved in stress, development, differentiation, skeletogenesis and detoxification processes) to identify the molecular targets affected by HEPEs. We show that the two HEPEs have very few common molecular targets, specifically affecting different classes of genes and at different times of development. In particular, 15-HEPE switched on fewer genes than 5-HEPE, up-regulating mainly stress-related genes at a later pluteus stage of development. 5-HEPE was stronger than 15-HEPE, targeting twenty-four genes, mainly at the earliest stages of embryo development (at the blastula and swimming blastula stages). These findings highlight the differences between HEPEs and PUAs and also have important ecological implications because many diatom species do not produce PUAs but rather these other chemicals derived from the oxidation of fatty acids
Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus.
Diatoms are dominant photosynthetic organisms in the world's oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes
Exploring Mixed Sterile Neutrino Dark Matter Models
Recent X-ray observations of galaxies and galaxy clusters suggest the existence of sterile neutrino dark matter with a mass of 7.1 keV. In this poster, we examine mixed dark matter models, comprised of both sterile neutrinos and cold dark matter, with sterile neutrino parameters consistent with the X-ray observations. We assess the compatibility of these models with observation by calculating cosmological observables resulting from sterile neutrino production mechanisms
Uremic lung: The “calcified cauliflower” sign in the end stage renal disease
AbstractMetastatic pulmonary calcification (MPC) is a rare pathological condition consisting of lung calcium salt deposits which commonly occurs in patients affected by chronic kidney disease probably for some abnormalities in calcium and phosphate metabolism. CT represents the technique of choice for detecting MPC findings including ground glass opacities and partially calcified nodules or consolidations. We present a case of MCP in a patient affected by hepato-renal autosomic-dominant polycystic disease; chest CT revealed extensive lobar-segmental parenchymal calcification with a peculiar cauliflower shape which we called “calcified cauliflower” sign. The “calcified cauliflower” sign can be reported as a new CT pattern of uremic lung that needs to be identified for a correct diagnosis and patient management
Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms
Diatoms form large spring blooms in lakes and oceans, providing fuel for higher trophic levels at the start of the growing season. Some of the diatom blooms, however, are not grazed by filter-feeding zooplankton like Daphnia due to their large size. Several of these large diatoms are susceptible to chytrid infections. Zoospores of chytrids appeared to be excellent food for Daphnia, both in terms of size, shape, and quality (PUFAs and cholesterol). Thus, zoospores of chytrids can bridge the gap between inedible diatoms and Daphnia. In order to examine the effects of diatoms and chytrids on the survival of copepods, we performed one grazing and one survival experiment. The grazing experiment revealed that the diatom, Asterionella formosa, was not grazed by the copepod, Eudiaptomus gracilis, even after being infected by the chytrid Zygorhizidium planktonicum. However, carbon and nitrogen concentrations were significantly reduced by E. gracilis only when A. formosa was infected by Z. planktonicum, indicating that the chytrids might facilitate material transfer from inedible diatoms to the copepods. The survival experiment revealed that E. gracilis lived shorter with A. formosa than with the cryptophyta Cryptomonas pyrenoidifera. However, the survival of E. gracilis increased significantly in the treatment where A. formosa cells were infected by Z. planktonicum. Since E. gracilis could not graze A. formosa cells due to their large colonial forms, E. gracilis may acquire nutrients by grazing on the zoospores, and were so able to survive in the presence of the A. formosa. This provides new insights into the role of parasitic fungi in aquatic food webs, where chytrids may improve copepod survival during diatom blooms.
Reproduction and respiration of a climate change indicator species: effect of temperature and variable food in the copepod Centropages chierchiae
The abundance of the calanoid copepod Centropages chierchiae has increased at the northern limits of its distribution in recent decades, mainly due to oceanic climate forcing, suggesting this as a key species in monitoring climate change. Laboratory experiments were conducted to study the combined effect of temperature, food type and concentration on the egg production rate (EPR) and hatching success (HS) of C. chierchiae. Females were fed on two monoalgal diets (Gymnodinium sp. and Phaeodactylum tricornutum) at two food concentrations and at three different temperatures (13, 19, 24C). Respiration rates of both genders were measured at four different temperatures (8, 13, 19, 24C). EPR was significantly different between temperatures and food concentrations, the maximum EPR being attained when the copepods were exposed to high food levels and at 19C. Prey type significantly influenced EPR; feeding on P. tricornutum resulted in higher egg production than Gymnodinium sp. HS was significantly lower at 13C than at 19 and 24C and higher with Gymnodinium sp. Respiration rates were sex independent and increased exponentially with temperature. To maintain basal metabolism, the minimum food intake of P. tricornutum ranged between 0.4 and 1.8 g C and for Gymnodinium sp. between 0.03 and 0.13 g C. Food intake was always higher than the metabolic demands, except for the highest temperature tested (24C). The present results confirm the sensitivity of C. chierchiae to temperature variations and may help in understanding the successful expansion of its distribution towards northern latitudes.Portuguese Science and Technology Foundation (FCT) [PTDC/MAR/098643/2008, PTDC/MAR/111304/2009, PTDC/MAR/0908066/2008]; FCT [SFRH/BD/28198/2006]; [SFRH/BPD/38332/2007
- …
