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Abstract: Diatoms are dominant photosynthetic organisms in the world’s oceans and 

represent a major food source for zooplankton and benthic filter-feeders. However, their 

beneficial role in sustaining marine food webs has been challenged after the discovery that 

they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which 

negatively affect the reproductive success of many invertebrates. Here, we report the 

effects of two common diatom PUAs, heptadienal and octadienal, which have never been 

tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model 

organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), 

as already reported for decadienal, the better-studied PUA of this group. Moreover,  

post-recovery experiments show that embryos can recover after treatment with all three 

PUAs, indicating that negative effects depend both on PUA concentrations and the 

exposure time of the embryos to these metabolites. We also identify the time range during 

which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the 

expression levels of thirty one genes (having a key role in a broad range of functional 

responses, such as stress, development, differentiation, skeletogenesis and detoxification 

processes) in order to identify the common targets affected by PUAs and their correlation 

with morphological abnormalities. This study opens new perspectives for understanding 
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how marine organisms afford protection from environmental toxicants through an 

integrated network of genes. 

Keywords: aldehydes; molecular targets; sea urchin; teratogenesis 

 

Abbreviations 

FSW, filtered sea water; hpf, hours post fertilization; µL, microliter; µM, micromolar; min, 

minutes; mM, millimolar; nm, nanometer. 

1. Introduction 

Diatoms are a highly productive class of microalgae, widespread in both marine and freshwater 

habitats, that are widely fed upon by both planktonic and benthic invertebrates. However, while 

diatoms may provide a source of energy for larval growth, they often reduce fecundity and/or hatching 

success or cause malformations (teratogenesis) during growth, due to the production of secondary 

metabolites, such as polyunsaturated aldehydes (PUAs) and other products deriving from the oxidation 

of polyunsaturated fatty acids (PUFAs), collectively termed oxylipins (reviewed by [1] and [2]). This 

biological model is new and has no other equivalent in marine plant-herbivore systems, since most of 

the known negative plant-animal interactions are generally related to repellent or poisoning processes, 

but never to reproductive failure.  

Oxylipins, and PUAs in particular, have important biological and biochemical properties, including 

the disruption of gametogenesis, gamete functionality, fertilization, embryonic mitosis and larval 

fitness and competence [1]. The dominant bioactive PUAs released by diatoms are C10  

2-trans-4-trans-decadienal, 2-trans-4-cis-7-cis-decatrienal and 2-trans-4-trans-7-cis-decatrienal [3],  

but also C8 2-trans-4-cis-7-octatrienal, 2-trans-4-trans-7-octatrienal, 2-trans-4-cis-7-octadienal,  

2-trans-4-trans-7-octadienal, C7 2-trans-4-cis-7-heptadienal and 2-trans-4-trans-7-heptadienal [4,5]. 

The first two PUAs were isolated from the freshwater diatom, Melosira varians, by Wendel and  

Jüttner [6], but the biological activity of these molecules was not known at the time. Miralto et al. [3] 

showed, for the first time, that they arrested the embryonic development of copepod and sea urchin 

embryos in a dose-dependent manner and also had anti-proliferative and apoptotic effects on human 

carcinoma cells. Successive studies have shown that sea urchin gametes incubated with decadienal 

have impaired fertilization success, due to the inhibition of sperm motility [7,8]. At concentrations 

higher than the dose required to arrest cell cleavage progression, decadienal induced apoptotic events 

in Paracentrotus lividus embryos by inducing caspase-3-like protease activity [9]. 

Hansen et al. [10] studied the effects of decadienal on the sea urchin, Sphaerechinus granularis, 

and showed that this PUA inhibited cyclin B/Cdk1 kinase activity, DNA replication and tubulin 

polymerization, leading to arrest of the cell cycle. Romano et al. [11] showed that PUAs compromised 

embryonic and larval development of sea urchins even at low doses and that the most deleterious of the 

PUAs tested were the longer chain aldehydes, such as decadienal. 
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The first molecular studies on the effects of PUAs on the sea urchin, P. lividus, were reported very 

recently [12,13]. In particular, newly fertilized sea urchin eggs were exposed to low concentrations of 

decadienal, and the expression levels of seventeen genes, implicated in a broad range of functional 

responses, were followed by real-time qPCR. At low decadienal concentrations, the sea urchin,  

P. lividus, activated different classes of genes to defend itself against this toxic aldehyde, ranging from 

canonical stress genes to developmental and skeletogenic genes [13]. The authors suggested that this 

orchestrated defence system against decadienal represents part of the chemical defensome of P. lividus, 

affording protection from environmental toxicants. 

Since information on the molecular effects of PUAs are scant and mostly related to the effects 

induced by decadienal, the aim of the present study was to explore the effects of two other ecologically 

important aldehydes, heptadienal and octadienal, which have never been tested before on P. lividus 

embryos from the molecular point of view, and to compare these effects with those induced by 

decadienal. The sea urchin, P. lividus, is considered a good model system to study the ecotoxicological 

response of marine invertebrates to environmental pollutants for several reasons: its ecological 

relevance, benthic and relatively sedimentary lifestyle, rapid response and high sensitivity to many 

types of contaminants, transparent embryos that grow rapidly in the laboratory and its long 

reproductive period. For these reasons, we decided to adopt it for our study and treated sea urchin 

embryos with increasing concentrations of heptadienal and octadienal to analyse morphological 

changes induced by exposure to these natural products and to define their mechanism of action and 

possible teratogenic activity. We also followed, by real-time qPCR, thirty one genes to identify 

potential target genes. Fourteen of these genes, having a key role in a broad range of functional 

responses, such as development, differentiation and detoxification processes, are now compared to 

those investigated in our previous study on the effects of decadienal on P. lividus development [13].  

2. Results 

2.1. Determination of Teratogenic Effects and PUA Dose-Dependent Concentrations 

As reported in previous studies [11,12], decadienal induced teratogenesis at low concentrations, 

with an increase in the number of abnormal plutei in the sea urchin, P. lividus. Marrone et al. [13] also 

reported a dose-dependent effect of this PUA in P. lividus, with severe malformations in plutei, such as 

asymmetrical arms and spicules and reduced arm length and shortening of the apex. Romano et al. [12] 

showed that a decadienal concentration of 1.6 μM (0.25 μg/mL) was ideal to study morphogenetic 

changes in embryo development and gene expression levels in P. lividus, with the production of about 

35% abnormal plutei. 

The present study explores further the effects of decadienal at the molecular level and compares 

these effects with those induced by two other PUAs, heptadienal and octadienal, which have never 

been tested before on P. lividus embryo development. Treatment with the three PUAs induced similar 

malformations in the plutei (see Figure 1), with effects on the arms, spicules and apex. Such plutei had 

a poorly-formed apex (Figure 1B) because of the spicules that appeared either parallel or disjoined at 

the tip (Figure 1C,D) or crossed at the apex (Figure 1E), with arms that appeared longer and broader or 

crooked and asymmetrical (Figure 1F) or completely degenerated (Figure 1G), compared to controls 
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(Figure 1A). At times, the entire body plan of the plutei was strongly compromised and malformed 

(Figure 1H). For a more detailed overview of the abnormal plutei produced by PUAs, see 

Supplementary Figure S1. 

Figure 1. Examples of malformations induced in Paracentrotus lividus plutei at 48 hours 

post fertilization (hpf) after incubation with the three polyunsaturated aldehydes (PUAs), 

heptadienal, octadienal and decadienal (B–H) in comparison with (A), the control; 

embryos are in sea water without aldehydes.  

 

The percentage of abnormal plutei was calculated at the different concentrations tested (Figure 2; 

see also the Experimental Section for more details).  

The effect was dose-dependent for the three PUAs tested, even if the range of concentrations 

inducing teratogenesis differed (from 0.5 to 2.5 μM for decadienal, from 1.0 to 6.0 μM for heptadienal 

and from 2.0 to 9.0 μM for octadienal). Decadienal was the strongest of the three, because of the very 

narrow range (2.0 μM) that affected embryonic development; heptadienal and octadienal required 

higher ranges of concentrations to reach the same effects as decadienal. Therefore, we chose as 

teratogenic concentrations 3.0 μM for heptadienal and 4.5 μM for octadienal, in order to obtain the 

same percentage of abnormal plutei (about 35%), as in the case of decadienal. Controls were also 

performed in filtered sea water (FSW) and in FSW plus methanol, and we found that methanol had no 

interference with the embryo development. In fact, the percentage of abnormal plutei was the same for 

embryos in FSW, as well as in FSW plus methanol.  

2.2. Post-Recovery Experiments 

Post-recovery experiments were performed in order to investigate if sea urchin embryos were able 

to recover after exposure to these PUAs. Eggs were incubated with three different concentrations of 

PUAs and then fertilized. The lowest concentrations represented the concentration inducing 

teratogenesis for each PUA (decadienal 1.6 μM, heptadienal 3.0 μM, octadienal 4.5 μM) and were also 

used to study the gene stress response (see below); the other concentrations (decadienal two and  

2.5 μM; heptadienal five and 6 μM; octadienal six and 8 μM) were chosen to have comparable 

percentages of abnormal plutei (about 60% and 75%). Embryos were washed at different times after 
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fertilization, 40 min, two, five, nine and 24 hours post fertilization (hpf), corresponding to two-cell, 

eight-cell, early blastula, swimming blastula and prism, respectively. After washing, embryos were 

grown to the pluteus stage to calculate the number of abnormal embryos. The results indicate that 

embryos were able to recover at all concentrations tested and at all times after fertilization (Figure 3), 

with the exception of the highest concentrations at 24 hpf. Moreover, the results suggest that octadienal 

could have a different mechanism of action compared to decadienal and heptadienal, because embryos 

were less able to recover at all times after fertilization at the highest concentrations. According to these 

results, we conclude that the post-recovery effects depend both on PUA concentrations and the 

exposure time of embryos to these metabolites, with the exception of octadienal at the  

highest concentration. 

Figure 2. Percentage of abnormal plutei (%) produced when Paracentrotus lividus  

newly-fertilized eggs are exposed to different concentrations (in μM) of heptadienal, 

octadienal and decadienal for 48 h post fertilization (*** with a p-value <0.001, Student’s  

t-test, GraphPad Software Inc., San Diego, CA, USA). 
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Figure 3. Percentage of abnormal Paracentrotus lividus plutei (%) produced after exposure 

to different concentrations of heptadienal, octadienal and decadienal and at different 

development times after fertilization. The percentages of abnormal plutei without washing 

are also reported.  

 

2.3. Addition of PUAs at Different Developmental Stages 

To define the stage at which PUAs affect embryo development, aldehydes were added: 10 min 

before fertilization (bf), 10 min pf, 40 min pf, 2, 3, 5 and 8 hpf. These stages represented key stages 

during sea urchin embryogenesis. In fact, 40 min pf corresponds to the two-cell stage; from this stage 

until 5 hpf, only mitotic cell division occurs; at 5 hpf (corresponding to early blastula stage) the 

differentiation of blastomeres begins, and cell fates in specific embryonic territories are defined; at  
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8 hpf, the embryo envelope starts to be digested, so the embryos comes into direct contact with the 

external environment for the first time. The results show that the addition of PUAs affect embryonic 

development in the same way, whether they are added 10 min before fertilization (bf) and/or 10 min 

pf, resulting in the same percentage of abnormal plutei (Figure 4). The addition of PUAs in later 

developmental stages does not seem to affect the embryonic development of P. lividus. In fact, the 

percentage of abnormal plutei remains very low (about 10%–20%) for each concentration tested.  

Figure 4. The percentage of abnormal Paracentrotus lividus plutei (%) produced after the 

exposure of newly fertilized eggs to different concentrations of heptadienal, octadienal and 

decadienal and examined at different developmental stages: 10 min before fertilization (bf),  

10 min and 40 min post fertilization (pf) and two, three, five and 8 hpf.  
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2.4. Gene Stress Response to PUAs 

To better understand the morphological effects at the molecular level, P. lividus embryos were 

allowed to develop in the presence of PUAs at concentrations inducing teratogenesis (1.6 μM for 

decadienal, 3.0 μM for heptadienal and 4.5 μM for octadienal), and embryos were collected at different 

development times after fertilization, corresponding to the stages of early blastula (5 hpf), swimming 

blastula (9 hpf), prism (24 hpf) and pluteus (48 hpf). The expression levels of thirty one genes (see the 

Experimental Section for more details) were followed by real-time qPCR to identify potential gene 

targets. These genes are implicated in a broad range of functional responses, such as stress, 

development, differentiation, skeletogenesis and detoxification processes (see Table 1).  

Table 1. The function for the genes analysed in the present study. 

Gene Name Acronym Function Reference 

    

Pl-p19 p19 small acidic proteins, involved in the formation of the [14] 

Pl-p16 p16 biomineralised skeleton of sea urchin embryos and adults  

    

ALG-2 interacting 

protein X/1 Alix protein involved in endocytic membrane trafficking, [15] 

  filamentous (F)-actin remodelling and cytokinesis  

    

Blimp Blimp zinc finger transcription factor, which plays a central role [16] 

  in both early and late endomesoderm specification  

    

Wnt 5 Wnt5 initiates the specification of the sea urchin posterior ectoderm [17] 

Wnt 6 Wnt6 activates endoderm in the sea urchin gene regulatory network [18] 

Wnt 8 Wnt8 endomesodermal specification, embryo patterning, early [19] 

  primary mesenchyme cells-gene regulatory network regulator  

    

Multi drug resistance 

protein 1 MDR1 ATP-binding cassette protein [20] 

    

Metallothionein 4 MT4   

Metallothionein 5 MT5 proteins capable of binding to heavy metals, involved in [21] 

Metallothionein 6 MT6 the transport of heavy metals and cellular detoxification  

Metallothionein 7 MT7   

Metallothionein 8 MT8   

    

Catalase Cat antioxidant defensive protein  

The control gene for real-time qPCR was ubiquitin, the expression of which remained constant in 

all sea urchin developmental stages. The histograms reported in Figures 5–8 show the relative 

expression ratios of the analysed genes with respect to control embryos in sea water without PUAs. 

Only expression values greater than a two-fold difference with respect to the controls were  

considered significant.  
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Figure 5. The histograms show the differences in the expression levels of thirty one genes 

followed by real-time qPCR. Paracentrotus lividus embryos were grown in the presence of 

decadienal, heptadienal and octadienal at teratogenic concentrations (1.6, 3.0 and  

4.5 μM, respectively) and collected at 5 hpf. Data are reported as a fold difference  

(mean ± SD), compared to the control embryos in sea water without aldehydes. Fold 

differences greater than ±2 (see the dotted horizontal guide lines at the values of +2  

and −2) were considered significant. 
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Figure 6. The histograms show the differences in the expression levels of thirty one genes 

followed by real-time qPCR. Paracentrotus lividus embryos were grown in the presence of 

decadienal, heptadienal and octadienal at teratogenic concentrations (1.6, 3.0 and  

4.5 μM, respectively) and collected at 9 hpf. For more details, see also the legend to  

Figure 5. 
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Figure 7. The histograms show the differences in the expression levels of thirty one genes 

followed by real-time qPCR. Paracentrotus lividus embryos were grown in the presence of 

decadienal, heptadienal and octadienal at teratogenic concentrations (1.6, 3.0 and  

4.5 μM, respectively) and collected at 24 hpf. For more details, see also the legend to 

Figure 5. 
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Figure 8. The histograms show the differences in the expression levels of thirty one genes 

followed by real-time qPCR. Paracentrotus lividus embryos were grown in the presence of 

decadienal, heptadienal and octadienal at teratogenic concentrations (1.6, 3.0 and  

4.5 μM, respectively) and collected at 48 hpf. For more details, see also the legend to 

Figure 5. 
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At the early blastula stage (5 hpf; see Figure 5), one metallothionein and one skeletogenic gene, 

MT4 and SM50, were targeted by all three PUAs, showing a 2.6-, 4.0- and 2.1-fold decrease in 

expression levels with respect to the control, respectively. The expression level of Wnt6, a gene 

implicated in the developmental and differentiation processes, was significantly reduced by 

heptadienal (2.4-fold) and octadienal (3.3-fold) compared to the control. Moreover, at this stage, only 

octadienal affected the expression levels of four skeletogenic genes, which were downregulated: 

SM30, Bmp5-7, p19 and p16, showing a 2.2-, 2.2-, 2.7- and 2.2-fold decrease with respect to the 

control, respectively. 

At the swimming blastula stage (9 hpf; see Figure 6), two genes were upregulated: the stress gene 

hsp70 (3.2- for decadienal, 2.6- for heptadienal and 2.5-fold for octadienal) and the protease hat  

(2.6-fold for decadienal and heptadienal; 3.5-fold for octadienal). Moreover, treatment with decadienal 

showed a 2.4-fold increase in the expression level of the stress gene, hsp60, and a three-fold decrease 

for metallothionein MT6. At this stage, octadienal activated one stress gene and two skeletogenic 

genes: MTase, SM30 and SM50, with a 4.7-, 5.4- and 4.6-fold increase with respect to the control. 

At the prism stage (24 hpf; see Figure 7), heptadienal and octadienal differentially affected the 

expression levels of the stress gene, MTase. Whereas heptadienal upregulated this gene with a 3.2-fold 

increase, octadienal downregulated with a 3.8-decrease in expression levels. At this developmental 

stage, the genes targeted by heptadienal were the stress gene, p38 MAPK, and the skeletogenic gene, 

SM50, both of which showed a 2.1-fold increase in expression levels with respect to the control, and 

the developmental gene, sox9, with a 2.7-fold increase. Decadienal affected the expression levels of 

the metallothionein, MT6, and the two skeletogenic genes, uni and SM30, with a 2.1-, 3- and 3.5-fold 

downregulation, respectively. 

At the pluteus stage (48 hpf; see Figure 8), all three PUAs targeted the metallothionein, MT8, and 

the skeletogenic SM50 genes. In particular, the expression levels of these genes were all 

downregulated: MT8 had a 2.7-fold decrease for decadienal and octadienal and a 2.1-fold decrease for 

heptadienal; SM50 a 3.2-, 3.5- and 3.1-fold decrease for decadienal, heptadienal and octadienal, 

respectively. The metallothionein MT6 gene was targeted by both heptadienal and octadienal, with a 

2.2- and 2.5-fold downregulation of their expression levels, respectively. Decadienal and heptadienal 

induced a 2.9-fold downregulation of Wnt6. Moreover, decadienal also affected the expression level of 

the metallothionein MT4 gene, causing a 3-fold decrease with respect to the control. Heptadienal  

upregulated the expression level of two genes, the developmental gene, Alix (2.2-fold), and the 

skeletogenic gene, p19 (3.2-fold), and downregulated several genes: two stress genes, hsp56 and  

p38 MAPK (2.2- and 2.7-fold decrease, respectively); three developmental genes, hat, Wnt5 and Wnt 8 

(3.5, 2.6- and 2.5-fold decrease, respectively); and two skeletogenic genes, uni and p16 (3.4 and  

2.7-fold decrease, respectively). Octadienal was the only PUA that downregulated the CAT gene  

(3.3-fold decrease) implicated in detoxification processes.  

3. Discussion 

Our results greatly expand on previous investigations on the stress response to the toxic PUA, 

decadienal, during sea urchin development [12,13]. Here, we probe more deeply into the effects 

induced by two ecologically important, but relatively unknown, PUAs, heptadienal and octadienal, 
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which have never been tested before on P. lividus embryos from the molecular point of view, in 

comparison with the better-known PUA, decadienal. Since mainly heptadienal and octadienal are 

released when diatom cells are wounded during grazing [5,22,23] or lysed from senescent cells during 

bloom periods [24], it should be interesting to determine the direct effects of these pure molecules. 

Until now, very few studies have tested the effects of pure PUAs on copepods [25–27] or reported 

their effects at the molecular level in copepods [28,29] or the sea urchin, P. lividus [12,13]. Sea urchins 

have been widely used as a sensible bioindicator of biochemical, morphological and physiological 

changes related to environmental stressors, such as pesticides, essential and heavy metals, ionizing 

radiations, ocean warming and acidification, metal nanoparticles and natural toxins [30–39]. 

Figure 9. Synopsis of the patterns of up- and down-regulation of different classes of genes 

in the sea urchin, Paracentrotus lividus, in the presence of the PUAs decadienal, 

heptadienal and octadienal. 
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An important outcome of this study was the finding that the expression levels of a great number of 

genes in the sea urchin, P. lividus, appears to be modulated by the PUAs, decadienal, heptadienal and 

octadienal. A synopsis showing the patterns of up- and down-regulation of different classes of genes is 

shown in Figure 9. These three aldehydes have very few common targets, but specifically affect 

different classes of genes and at different times of development.  

Of the stress genes, the canonical stress gene, hsp70, was affected by the three aldehydes at the 

same development time (at the swimming blastula stage), confirming that embryos were subjected to 

stress, resulting in the activation of this gene as a first defence system [12]. The other two heat shock 

proteins, hsp60 and hsp56, were also targeted by PUAs; these genes are reported as a part of a 

protection system against different stressors enhancing cell survival and normal cellular  

homeostasis [12,28,40–42].  

The possible role of DNA methylation as a molecular marker in response to stress [43] was 

confirmed by the increase in the expression level of MTase after treatment with heptadienal at the 

prism stage and octadienal at the swimming blastula and prism stages. The expression level of  

p38 MAPK, participating in a signalling cascade in response to different stimuli [33], was affected by 

heptadienal at the prism and pluteus stages. Very recently, Pinsino et al. [44] emphasized the role of 

p38 MAPK in the regulation of sea urchin embryonic development after exposure to manganese. 

Of the genes involved in development and differentiation processes, PUAs affected the expression 

levels of hat, sox9, alix and Wnt. We found an increase in the expression level of hat, an early embryonic 

messenger transiently expressed during the blastula stage [45,46] with all three PUAs. The sox9 gene 

was upregulated by heptadienal at the prism stage, suggesting an effect on left-right asymmetry 

processes [47]. Alix, a multifunctional protein involved in different cellular processes, including 

endocytic membrane trafficking, filamentous-actin remodelling and cytokinesis [15], was upregulated 

only by heptadienal at the pluteus stage. In sea urchins, this transcript encodes for a maternal protein 

involved in determination/differentiation events that is expressed from fertilization to the two-cell 

embryo stage. In sea urchin eggs, the gene is localized throughout the cytoplasm with a punctuated 

pattern, and soon after fertilization, it accumulates in the cytosol and in microvilli-like protrusions.  

Of the genes belonging to the canonical Wnt pathway, Wnt6 was targeted by all three PUAs that 

induced a decrease in the expression levels of this gene. This represents a very interesting result, 

supporting the essential role of Wnt6 to in triggering endoderm specification [18]. In fact, heptadienal 

and octadienal affected the expression level of this gene at 5 hpf, when the differentiation of 

blastomeres occurs and cell fates in specific embryonic territories are defined. Heptadienal was also 

able to determine a decrease in the expression levels of two other genes of the Wnt pathway: Wnt5, 

which acts as a short-range inter-blastomere signal, activating cells in the ectoderm, integrating 

different types of positional information from both the primary and secondary embryonic axes in order 

to correctly locate the production site of signals needed for skeleton formation to take place [17]; and 

Wnt8 is associated with cell fate determination through canonical signalling pathways and is important 

for the morphogenetic movement of primary mesenchyme cells [19]. 

All genes involved in skeletogenesis were downregulated by PUAs, except for the Nec gene. SM30, 

SM50 and Uni were previously found to be target genes for decadienal [13]. Octadienal downregulated 

the expression level of BMP5-7, a gene family that is reported as being positive regulators of oral and 

aboral ectoderm specification [17]. P19 was upregulated by heptadienal, but was downregulated by 
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octadienal together with p16; these are two small acidic proteins involved in the formation of the 

biomineralised skeleton of sea urchin embryos and adults [14].  

We also analysed eight genes involved in detoxification processes. In particular, of six 

metallothioneins that were analysed in this work, only the expression levels of three genes appeared to 

be perturbed by PUAs. Ragusa et al. [21] reported that two metallothionein genes (MT7 and MT8) 

appeared to be constitutively expressed and upregulated upon cadmium treatment, whereas other genes 

(MT4, MT5 and MT6) were not transcribed in control embryos and were specifically activated in 

response to cadmium treatment. Our results show the down-expression of the induced 

metallothioneins, MT4 and MT6, and the constitutive one, MT8, at a later stage of development  

(48 hpf). The induction of other metallothioneins may require exposure to higher concentrations of 

PUAs or may depend on the nature of the stress agent, considering that metallothioneins seem to 

respond very specifically to heavy metal exposure. The gene, MDR1, belongs to ATP-binding cassette 

transporters, which are activated by sub-lethal doses of specific contaminants (such as oxybenzone, 

mercuric chloride and tributyltin) during embryonic development (from the zygote to the blastula 

stage) of sea urchins [20]. Moreover, sea urchin embryos utilize it in cell signalling and lysosomal and 

mainly mitochondrial homeostasis [48]. The expression level of this gene was not affected by PUA 

exposure, probably due to the low levels of exposure. In fact, we demonstrated the loss of 

mitochondrial functionality only at higher concentrations of decadienal in a previous study [12]. The 

down-expression of the CAT gene only in the case of octadienal suggests that a specific detoxification 

system could be activated in sea urchins after exposure to this PUA. 

These molecular results are in accordance with our morphological results that revealed that the 

majority of malformations affected the skeleton and the plan of the development and differentiation of 

sea urchin embryos, as reported in Figure 1. In fact, several genes belonging to the skeletogenic, 

developmental and differentiation classes were affected by PUAs. Even if, according to our 

morphological analyses, octadienal seems to be the weakest of the three aldehydes, our study on gene 

expression levels reveals that this aldehyde affects a very early stage of embryonic development. In 

fact, octadienal differentially affected the expression levels of five skeletogenic genes at the early 

blastula stage compared to the other aldehydes. These data are also in accordance with our post-recovery 

experiments, in which we hypothesized that octadienal could have a different mechanism of action, 

because embryos cannot recover in the presence of this aldehyde at the highest concentration. This 

different behaviour could be correlated with the downregulation of skeletogenic genes at an early stage 

of embryo development, which does not give embryos the chance to recover. The strongest molecular 

effects seem to occur after treatment with heptadienal, but at a later stage of development. In fact, at  

48 hpf (pluteus stage), heptadienal affected the expression levels of thirteen genes. Taken together, 

these results suggest that although treatment with the three aldehydes did not induce any visible 

differences at the morphological level, they affected different physiological processes. 

The genes identified in this work as targets for PUAs may represent possible biomarkers to detect 

exposure to pollutants that may include microbial products, heavy metals and phytotoxins. More 

generally, the new genes analysed in this work can be considered as an additional part of the stress 

surveillance system or chemical defensome of the sea urchin, as proposed in Marrone et al. [13], 

affording protection from environmental xenobiotics. 
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4. Experimental Section 

4.1. Ethics Statement 

Paracentrotus lividus (Lamarck) sea urchins were collected from a location that is not  

privately-owned or protected in any way, according to Italian legislation of the Marina Mercantile 

(Decreto del Presidente della Repubblica DPR 1639/68, 09/19/1980 confirmed on 01/10/2000). The 

field studies did not involve endangered or protected species. All animal procedures were in 

compliance with the guidelines of the European Union (Directive 609/86). 

4.2. Gamete Collection, Embryo Culture, Exposure to Aldehydes and Morphological Analysis 

Adult sea urchins of the species, P. lividus, were collected during the breeding season by  

scuba-diving in the Gulf of Naples, transported in an insulated box to the laboratory within 1 h after 

collection and maintained in tanks with circulating sea water until testing. Sea urchins were injected 

with 2 M KCl through the peribuccal membrane to obtain the emission of gametes. Eggs were washed 

with filtered sea water (FSW) and kept in FSW until use. Concentrated sperm was collected, dried and 

kept undiluted at +4 °C until use. 

Before fertilization, eggs were incubated at room temperature for 10 min in the presence of different 

concentrations of the three PUAs: 2-trans,4-trans-decadienal at 1.0, 1.3, 1.6, 2.0, 2.3 μM (similar to the 

concentrations tested in reference [13]); 2-trans,4-trans-heptadienal at 1.0, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 

5.5, 6.0 μM; 2-trans,4-trans-octadienal (Sigma-Aldrich, Milan, Italy) at 2.0, 3.0, 4.0, 4.5, 5.0, 6.0, 7.0, 

8.0, 9.0 μM; and the controls were in FSW without PUAs. 

Eggs were fertilized utilising sperm-to-egg ratios of 100:1 for both controls and treated embryos. 

Fertilized eggs were kept at 20 °C in a controlled temperature chamber on a 12 h:12 h light:dark cycle. 

PUAs were diluted in methanol, considering a methanol to FSW ratio of 10 μL:1 mL, so as to avoid 

interference with embryo development. Controls were also performed in FSW and in FSW in the 

presence of methanol.  

Experiments were conducted in triplicate using three egg groups collected from three different 

females. After 48 h of incubation, morphological malformations were determined for at least  

200 plutei using a light microscope (Zeiss Axiovert 135TV, Carl Zeiss, Jena, Germany) in comparison 

to control embryos in FSW without PUAs. 

4.3. Post-Recovery Experiments 

The procedure for the treatments with the three PUAs was the same as reported above. For each 

PUA, three concentrations were tested according to the percentage of abnormal plutei recorded during 

previous tests. The lowest concentrations were those inducing teratogenesis: 1.6 μM for decadienal, 

3.0 μM for heptadienal and 4.5 μM for octadienal, all three of which induced the production of about 

35% abnormal plutei that were also used for molecular experiments (see below). We then tested the 

concentrations that induced the production of about 60% and 75% of abnormal plutei, so as to have 

comparable results with the three PUAs. Embryos were washed twice at different development times: 

40 min and 2, 5, 9 and 24 h post-fertilization (hpf). Embryos were grown to the pluteus stage. The 
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number of abnormal embryos was evaluated by fixing embryos in formaldehyde (4% in FSW) and 

counting under the light microscope. 

One-way ANOVA with Tukey’s post-hoc test was performed using GraphPad Prism version 4.00 

for Windows (GraphPad Software, San Diego, CA, USA). 

4.4. Addition of PUAs after Fertilization 

Eggs were fertilized without PUAs, according to the procedure reported above. The development of 

embryos was followed by microscopic examination for different development times after fertilization 

(10 min pf, 40 min pf, 2, 3, 5 and 8 hpf). PUAs were then added at the same concentrations used for 

post-recovery experiments. As controls, PUAs were also added 10 min before fertilization. The 

number of abnormal plutei was evaluated from fixed embryos. One-way ANOVA with Tukey’s  

post-hoc test was performed using GraphPad Prism version 4.00 for Windows (GraphPad Software, 

San Diego, CA, USA). 

4.5. RNA Extraction and cDNA Synthesis 

About 30,000 eggs in 200 mL of FSW were treated for 10 min with the three PUAs at the following 

concentrations: 1.6 μM for decadienal (as in [13]); 3.0 μM for heptadienal; and 4.5 μM for octadienal. 

Eggs were then fertilized and collected at different developmental times. Samples were collected at  

5, 9, 24 and 48 hpf by centrifugation at 1800 relative centrifugal force for 10 min in a swing out rotor 

at 4 °C. The pellet was washed with phosphate buffered saline and then frozen in liquid nitrogen and 

kept at −80 °C.  

Total RNA was extracted from each developmental stage using TRIzol (Invitrogen, Life 

Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Extraction with 

chloroform/isoamyl alcohol (24:1) was performed following RNA precipitation by addition of 

glycogen and isopropyl alcohol. Contaminating DNA was degraded by treating each sample with a 

DNase RNase-free kit (Roche, Milan, Italy) according to the manufacturer’s instructions. The amount 

of total RNA extracted was estimated by the absorbance at 260 nm and the purity by 260/280 and 

260/230 nm ratios, by a NanoDrop spectrophotometer (ND-1000 UV-Vis Spectrophotometer; 

NanoDrop Technologies, Wilmington, DE, USA). The integrity of RNA was evaluated by agarose gel 

electrophoresis. Intact rRNA subunits (28S and 18S) were observed on the gel indicating minimal 

degradation of the RNA. For each sample, 600 ng of total RNA extracted was retrotranscribed with an 

iScript™ cDNA Synthesis kit (Bio-Rad, Milan, Italy), following the manufacturer’s instructions. 

Synthetized cDNA was used in real-time qPCR experiments without dilution. 

To evaluate the efficiency of cDNA synthesis, a PCR was performed with primers of the reference 

gene, ubiquitin. The reaction was carried out on the C1000 Touch Thermal Cycler GeneAmp PCR 

System 9700 (Applied Biosystem, Monza, Italy) in a 30 μL final volume with 3 μL 10× PCR reaction 

buffer (Roche, Milan, Italy), 3 μL 10× 2 mM dNTP, 1 μL 5 U/μL Taq (Roche, Milan, Italy),  

100 ng/μL of each oligo, template cDNA and nuclease free water to 30 μL. The PCR program 

consisted of a denaturation step at 95 °C for 5 min, 35 cycles at 95 °C for 45 s, 60 °C for 1 min and 

72 °C for 30 s and a final extension step at 72 °C for 10 min. 
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4.6. Gene Expression by Real-Time qPCR 

For all real-time qPCR experiments, the data from each cDNA sample were normalized using 

ubiquitin mRNA as the endogenous control level, the level of which remained relatively constant in all 

developmental stages examined according to Nemer et al. ([49]; for more details, see Romano et al. [12]). 

The expression level of seventeen genes, previously analysed by real-time qPCR in Marrone et al. [13], 

were analysed together with fourteen new genes (see Table 1): Pl-p19 (p19), Pl-p16 (p16; [14]), 

metallothionein 4 (MT4; [21]), metallothionein 5 (MT5; [21]), metallothionein 6 (MT6; [21]), 

metallothionein 7 (MT7; [21], metallothionein 8 (MT8; [21]), blimp (Blimp; [16]), ALG-2 interacting 

protein X/1(Alix; [15]), multi-drug resistance protein 1 (MDR 1), Wnt5 (Wnt5), Wnt6 (Wnt6) and Wnt8 

(Wnt8). We also analysed the catalase gene (CAT); since the CAT sequence of P. lividus is not 

available, a 156-bp fragment was amplified using specific primers for this gene from 

Strongylocentrotus purpuratus. The amplified fragment using a Taq High Fidelity PCR System 

(Roche, Milan, Italy) was purified from agarose gel using the QIAquick Gel Extraction kit (Qiagen, 

Milan, Italy), and the specificity of the PCR product for catalase was checked by DNA sequencing. 

Gene sequences were retrieved from NCBI [50]. For each gene, specific primers were designed on 

the basis of nucleotide sequences of P. lividus (see Table 2); primers reported in the indicated 

references were used for six genes. The same procedure for the amplified fragments used for CAT was 

applied for these genes to check for the specificity of the amplified products. 

Table 2. Gene name, acronym, accession numbers, primer sequences and lengths of PCR 

amplified fragments are reported for the genes analysed. For the genes that have a 

reference, the lengths of PCR fragments were not reported. 

Gene Name Acronym 
Accession 

Number 
Primer Sequence (5′→3′) PCR Fragment (bp) 

      

Pl-p19 p19 FR693764 Pl_P19_F1 GACAAGCTCGACATCAACAAG 205 

   Pl_P19_R1 CTGGAGTCGATGCTGCATCATG  

      

Pl-p16 p16 FR693763 Pl-p16 For CGGGCAGCGATGACTCA 104 

[14]   Pl-p16 Rev AAATGCCATACCGCTCTTCTGT  

      

Metallothionein 4 MT4  MT4 For GCTCAAAATCTTCAACATGGCTAATGA  

[21]   MT4 Rev AGCACTTTCCAGTTTCACAACAAGC  

      

Metallothionein 5 MT5  MT5 For CGACTTTAGCTCAAATTCATCACCATG  

[21]   MT5 Rev TCCACAGCATTTACCATCCTTGC  

      

Metallothionein 6 MT6  MT6 For CACGATTTGTGCTCAATCCTTCAT  

[21]   MT6 Rev TTTGTGCATGATGTTCCACAGC  

      

Metallothionein 7 MT7  MT7 For CGTCAAGAGATCAAAATCATCAACCA  

[21]   MT7 Rev ACAGCACTCGCCAGTAATACAGCAC   
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Table 2. Cont. 

Metallothionein 8 MT8  MT8 For GATGGTTGTCGTCGCTCCTAACA  

[21]   MT8 Rev TCAAGAAAGGCTGGTATCAAATCTGAC  

      

Blimp Blimp HQ322503 Pl_Blimp1_For CTGTCTACTCCATGCCGTCC 161 

   Pl_Blimp1_Rev GCCTCCTGCTTCAGATCAGC  

      

ALG-2 interacting protein X/1 Alix HE646599 AL1500for TACCAGACCATTCTCAACAAT 110 

[15]   AL1610rev TGCTATTTCCGCTTCGCTTTT  

      

Multi drug resistance protein 1 MDR1 JQ793791 Pl_MDR1_F2 GTCAAGGTACTCAATGGGGTC 158 

   Pl_MDR1_Rev CGGATGTCAATGCCATCAATC  

      

Wnt 5 Wnt5 HM449806 Pl_Wnt5_F2 CACCCAGCCCCTGTGCAGTG 135 

   Pl_Wnt5_Rev CTGCAGTTCCACCTCCTATTC  

      

Wnt 6 Wnt6 HQ322504 Pl_Wnt6_For CGAATCTGCCGACGATCACG 164 

   Pl_Wnt6_For GCATTGTCGTACAGTTCCACC  

      

Wnt 8 Wnt8 HM449816 Pl_Wnt8_For CTGTAAGTGTCATGGCGTCTC 197 

   Pl_Wnt8_For GAGCGAATCGGAGATGACGG  

      

Catalase CAT SPU_000281.1 Sp-CAT_F1 GACTTCGTCTTCACCGACGAG 156 

   Sp-CAT_R1 GACTCAAAGGGTGCAGCCTTG  

The specificity of amplification reactions was verified by melting curve analysis. The efficiency of 

each primer pair was calculated according to standard method curves using the equation E=10
−1/slope

. 

Five serial dilutions were set up to determine Ct values and reaction efficiencies for all primer pairs. 

Standard curves were generated for each oligonucleotide pair using Ct values versus the logarithm of 

each dilution factor. PCR efficiencies were calculated for control and target genes and were found to 

be 2. Diluted cDNA was used as a template in a reaction containing a final concentration of 0.3 mM 

for each primer and 1× FastStart SYBR Green master mix (total volume of 10 μL) (Applied 

Biosystems, Monza, Italy). PCR amplifications were performed in a ViiATM7 Real Time PCR System 

(Applied Biosystems, Monza, Italy) thermal cycler using the following thermal profile: 95 °C for  

10 min, one cycle for cDNA denaturation; 95 °C for 15 s and 60 °C for 1 min, 40 cycles for 

amplification; 72 °C for 5 min, one cycle for final elongation; one cycle for melting curve analysis 

(from 60 °C to 95 °C) to verify the presence of a single product. Each assay included a no-template 

control for each primer pair. To capture intra-assay variability, all real-time qPCR reactions were 

carried out in triplicate. Fluorescence was measured using ViiATM7 software (Applied Biosystems, 

Monza, Italy). The expression of each gene was analysed and internally normalized against ubiquitin 

using REST software (Relative Expression Software Tool, Weihenstephan, Germany) based on the 

Pfaffl method [51,52]. Relative expression ratios above two cycles were considered significant. 

Experiments were repeated at least twice. Statistical analysis was performed using GraphPad Prism 

version 4.00 for Windows (GraphPad Software, San Diego, CA, USA). 
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5. Conclusions 

In conclusion, our findings provide molecular evidence for the toxic effects of diatom-derived 

PUAs and propose novel tools for understanding the cellular mechanisms of the response to aldehyde 

exposure in benthic organisms. Sea urchins may come in contact with diatom PUAs in the field at the 

end of a bloom, with the mass sinking of diatoms to the sediment, which represents a major source of 

organic matter for benthic systems [53]. This is of considerable ecological relevance given the 

importance of diatom blooms in nutrient-rich aquatic environments. Moreover, our results may be 

useful in understanding how changes in gene expression levels may be used as an early indicator of 

stressful conditions in the marine environment. Generally, these studies are fundamental to our 

understanding of how marine organisms attempt to defend themselves from environmental toxicants, 

benefitting from the protection provided by an integrated network of genes. 
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