289 research outputs found

    Comparison of Depth of Cure, Hardness and Heat Generation of LED and High Intensity QTH Light Sources

    Get PDF
    Objectives: To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). Methods: A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared using high power QTH light unit, cured for four or six seconds recommended exposure time. Hardness, depth of cure (DOC) and thermal rise during exposure time by these light sources were measured. The data submitted to analysis of variance (ANOVA), Tukey's and student's t tests at 5% significance level. Results: Significant differences were found in hardness, DOC of samples cured by above mentioned light sources and also in thermal rises during exposure time. The curing performance of the tested QTH was not as well as the LED light. TPB light source produced the maximum hardness (81.25, 73.29, 65.49,55.83 and 24.53 for 0 mm, 1 mm, 2 mm, 3 mm and 4 mm intervals) and DOC (2.64 mm) values with forty seconds irradiation time and the high power (QTH) the least hardness (73.27, 61.51 and 31.59 for 0 mm, 1 mm and 2 mm, respectively) and DOC (2 mm) values with four seconds irradiation time. Thermal rises during 4 s and 6 s curing time using high power QTH and tested LED were 1.88°C, 3°C and 1.87°C, respectively. Conclusions: The used high power LED light produced greater hardness and depth of cure during forty seconds exposure time compared to high power QTH light with four or six seconds curing time. Thermal rise during 6 s curing time with QTH was greater compared to thermal changes occurred during 40 s curing time with tested LED light source. There was no difference seen in thermal changes caused by LED light with 40 s and QTH light with 4 s exposure time

    Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model.

    Get PDF
    Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma

    Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal

    Get PDF
    With a tube etching process, conical-ended optical fibers for middle infrared lasers that have lateral emissions can be produced, a feature of benefit for delivering laser energy onto the root canal walls. This study examined the ability of these improved laser tips when Er:YAG and Er,Cr:YSGG lasers were used in root canals in which thick smear layers had been created intentionally to provide a challenge for the laser system. Smear layer was assessed from scanning electron microscopy images with an objective digital method. Lasing improved the action of ethylene diamine tetraacetic acid with cetavlon (EDTAC) in removing smear layer. Conical fibers performed better than plain fibers, but there was no difference in performance between the 2 laser systems when matched for all other parameters. These results provide a "proof of concept" for lateral emitting fibers for endodontic procedures and illustrate the novel contribution of lasing to the action of EDTAC in dissolving smear layer

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by 1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants

    Get PDF
    Introns in a wide range of organisms including plants, animals and fungi are able to increase the expression of the gene that they are contained in. This process of intron-mediated enhancement (IME) is most thoroughly studied in Arabidopsis thaliana, where it has been shown that enhancing introns are typically located near the promoter and are compositionally distinct from downstream introns. In this study, we perform a comprehensive comparative analysis of several sequenced plant genomes. We find that enhancing sequences are conserved in the multi-cellular plants but are either absent or unrecognizable in algae. IME signals are preferentially located towards the 5′-end of first introns but also appear to be enriched in 5′-UTRs and coding regions near the transcription start site. Enhancing introns are found most prominently in genes that are highly expressed in a wide range of tissues. Through site-directed mutagenesis in A. thaliana, we show that IME signals can be inserted or removed from introns to increase or decrease gene expression. Although we do not yet know the specific mechanism of IME, the predicted signals appear to be both functional and highly conserved

    The Causes of Foehn Warming in the Lee of Mountains

    Get PDF
    The foehn effect is well known as the warming, drying, and cloud clearance experienced on the lee side of mountain ranges during “flow over” conditions. Foehn flows were first described more than a century ago when two mechanisms for this warming effect were postulated: an isentropic drawdown mechanism, where potentially warmer air from aloft is brought down adiabatically, and a latent heating and precipitation mechanism, where air cools less on ascent—owing to condensation and latent heat release—than on its dry descent on the lee side. Here, for the first time, the direct quantitative contribution of these and other foehn warming mechanisms is shown. The results suggest a new paradigm is required after it is demonstrated that a third mechanism, mechanical mixing of the foehn flow by turbulence, is significant. In fact, depending on the flow dynamics, any of the three warming mechanisms can dominate. A novel Lagrangian heat budget model, back trajectories, high-resolution numerical model output, and aircraft observations are all employed. The study focuses on a unique natural laboratory—one that allows unambiguous quantification of the leeside warming—namely, the Antarctic Peninsula and Larsen C Ice Shelf. The demonstration that three foehn warming mechanisms are important has ramifications for weather forecasting in mountainous areas and associated hazards such as ice shelf melt and wildfires

    FAPRI 1997 U.S. Agricultural Outlook

    Get PDF
    The Food and Agricultural Policy Research Institute develops a long-term outlook for the world agricultural sector once each year. While the initial steps to develop the new baseline start as soon as the previous year’s baseline is completed, the work begins in earnest in September and October with a discussion of policy and macroeconomic assumptions as well as a review of the models to be used in the upcoming exercise. The preliminary baseline is developed in November and that preliminary baseline is then shared among a number of reviewers. During the first or second week of January, more than 100 respondents are brought together for a two-day review process. Each segment of the baseline is presented and examined in a frank and open exchange of views. Subsequent to that review, the preliminary baseline is finalized
    corecore